Skip to main content
Log in

Synthesis of gold nanoparticles in sol–gel glass porogens containing [bmim][BF4] ionic liquid

  • ORIGINAL PAPER
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The [bmim][BF4] ionic liquid effect on gold nanoparticles formation in silica sol–gel materials is studied in order to produce gel-derived glasses with optical properties. The characteristic red color from gold nanoparticles is observed for transparent glass monoliths obtained sintering, between 365 and 425 °C, a silica sol–gel precursor containing HAuCl4·3H2O and [bmim][BF4], under normal atmospheric conditions. The effect of sintering the ionogel at different temperatures (Tsint) or times (tsint) on the optical properties, shape, size, and distribution of gold nanoparticles is discussed. Presence of the gold particles is observed using transmission electron microscopy images followed by energy dispersive X-ray spectroscopy analysis. The thermal decomposition of [bmim][BF4] in the ionogel is investigate using calorimetric and spectroscopic techniques, and by analysis of volatile compounds released by the sol–gel material during sintering. With these results a mechanism for the formation of the gold nanoparticles is proposed, where a first ionic liquid degradation step provides the reductive environment that enables the gold nanoparticles production at the range of temperatures between 350 and 425 °C. Upon sintering the synthesized materials the ionic liquid acts as a sacrificial additive and the ionic liquid thermal decomposition products enables the formation of gold nanoparticles in the sol–gel matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Dykman L, Khlebtsov N (2012) Chem Soc Rev 41:2256–2282

    Article  CAS  Google Scholar 

  2. Tiwari PM, Vig K, Dennis VA, Singh SR (2011) Nanomaterials 1:31–63

    Article  CAS  Google Scholar 

  3. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Nanomedicine 2:681–693

    Article  CAS  Google Scholar 

  4. Rosa J, Conde J, Fuente JM, Lima JC, Baptista PV (2012) Biosens Bioelectron 36:161–167

    Article  CAS  Google Scholar 

  5. Schmid G (1994) Clusters and colloids: from theory to application. Wiley-VCH, Weinheim

    Book  Google Scholar 

  6. Daniel MC, Astruc D (2004) Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  7. Nogami M, Selvan ST, Song H (2001) In: Nalwa HS (ed) Handbook of advanced electronic and photonic devices. Academic Press, San Diego

    Google Scholar 

  8. Weyl WA (1951) Coloured glasses. Society of Glass Technology, Sheffield

    Google Scholar 

  9. Schwartzberg AM, Zhang JZ (2008) J Phys Chem C 112:10323–10337

    Article  CAS  Google Scholar 

  10. Sonnichesen C, Franzl T, Wilk T, Von Plessen G, Feldmann J (2002) New J Phys 4:93.1–93.8

    Google Scholar 

  11. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  12. Turkevich J, Stevenson PC, Hillier JA (1951) Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  13. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) J Phys Chem B 110:15700–15707

    Article  CAS  Google Scholar 

  14. Rosa JP, Lima JC, Baptista PV (2011) Nanotechnology 22:415202

    Article  CAS  Google Scholar 

  15. Epifani M, Giannini C, Tapfer L, Vasanelli L (2000) J Am Ceram Soc 83:2385–2393

    Article  CAS  Google Scholar 

  16. Ventura MG, Parola AJ, Pires de Matos A (2011) J Non Cryst Solids 357:1342–1349

    Article  CAS  Google Scholar 

  17. Zhang X, Guo Q, Cui D (2009) Sensors 9:1033–1053

    Article  CAS  Google Scholar 

  18. Lu Y, Yin Y, Li Z, Xia Y (2002) Nano Lett 2:785–788

    Article  CAS  Google Scholar 

  19. Lusvardi G, Malavasi G, Aina V, Bertinetti L, Cerrato G, Magnacca G, Morterra C, Menabue L (2010) Langmuir 26:10303–10314

    Article  CAS  Google Scholar 

  20. Aina V, Marchis T, Laurenti E, Diana E, Lusvardi G, Malavasi G, Menabue L, Cerrato G, Morterra C (2010) Langmuir 26:18600–18605

    Article  CAS  Google Scholar 

  21. Brinker CJ, Scherer GW (1990) Sol-gel science. Academic Press, Boston

    Google Scholar 

  22. Hench L, West JK (1990) Chem Rev 90:33–72

    Article  CAS  Google Scholar 

  23. Kobayashi Y, Correa-Duarte MA, Liz-Marzán LM (2001) Langmuir 17:6375–6379

    Article  CAS  Google Scholar 

  24. Ventura MG, Laia CAT, Parola AJ (2010) J Phys Chem C 114:18414–18422

    Article  CAS  Google Scholar 

  25. Zhou Y, Schattka JH, Antonietti M (2004) Nano Lett 4:477–481

    Article  CAS  Google Scholar 

  26. Néouze MA, Le Bideau J, Gaveau P, Bellayer S, Vioux A (2006) Chem Mater 18:3931–3936

    Article  Google Scholar 

  27. Le Bideau J, Gaveau P, Bellayer S, Néouze MA, Vioux A (2007) Phys Chem Chem Phys 9:5419–5422

    Article  Google Scholar 

  28. Göbel R, Hesemann P, Weber J, Möller E, Friedrich A, Beuermann S, Taubert A (2009) Phys Chem Chem Phys 11:3653–3662

    Article  Google Scholar 

  29. Göbel R, Friedrich A, Taubert A (2010) Dalton Trans 39:603–611

    Article  Google Scholar 

  30. Singh MP, Singh RK, Chandra S (2010) Chem Phys Chem 11:2036–2043

    CAS  Google Scholar 

  31. Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Angew Chem Int Ed 43:4988–4992

    Article  CAS  Google Scholar 

  32. Viau L, Néouze MA, Biolley C, Volland S, Brevet D, Gaveau P, Dieudonné P, Galarneau A, Vioux A (2012) Chem Mater 24:3128–3134

    Article  CAS  Google Scholar 

  33. Templeton AC, Wuelfing WP, Murray RW (2000) Acc Chem Res 33:27–36

    Article  CAS  Google Scholar 

  34. Bognolo G (2003) Adv Colloid Interface Sci 106:169–181

    Article  CAS  Google Scholar 

  35. El-Sayed MA (2001) Acc Chem Res 34:257–264

    Article  CAS  Google Scholar 

  36. Liz-Marzán LM (2006) Langmuir 22:32–41

    Article  Google Scholar 

  37. Ruivo A, Gomes C, Lima A, Botelho ML, Melo R, Belchior A, Pires de Matos A (2008) J Cult Herit 9:e134–e137

    Article  Google Scholar 

  38. Firestone MA, Dietz ML, Seifert S, Trasobares S, Miller DJ, Zaluzec NJ (2005) Small 1:754–760

    Article  CAS  Google Scholar 

  39. Mudring AV, Babai A, Arenz S, Giernoth R (2005) Angew Chem Int Ed 44:5485–5488

    Article  CAS  Google Scholar 

  40. Gaillard C, Chaumont A, Billard I, Hennig C, Ouadi A, Georg S, Wipff G (2010) Inorg Chem 49:6484–6494

    Article  CAS  Google Scholar 

  41. Prechtl MHG, Campbell PS, Scholten JD, Fraser GB, Machado G, Santini CC, Dupont J, Chauvin Y (2010) Nanoscale 2:2601–2606

    Article  CAS  Google Scholar 

  42. Dupont J, Souza RF, Suarez PAZ (2002) Chem Rev 102:3667–3696

    Article  CAS  Google Scholar 

  43. Bansal V, Bhargava SK (2011) Ionic liquids: theory, properties, new aproaches. InTech, Croatia

    Google Scholar 

  44. Safavi A, Zeinali S (2010) Colloids Surf A Physicochem Eng Aspects 362:121–126

    Article  CAS  Google Scholar 

  45. Dupont J, Scholten D (2010) Chem Soc Rev 39:1780–1804

    Article  CAS  Google Scholar 

  46. Bhatt AI, Mechler Á, Martin LL, Bond AM (2007) J Mater Chem 17:2241–2250

    Article  CAS  Google Scholar 

  47. Li Z, Liu Z, Zhang J, Han B, Du J, Gao Y, Jiang T (2005) J Phys Chem B 109:14445–14448

    Article  CAS  Google Scholar 

  48. Richter K, Birkner A, Mudring AV (2011) Phys Chem Chem Phys 13:7136–7141

    Article  CAS  Google Scholar 

  49. Neouze MA (2010) J Mater Chem 20:9593–9607

    Article  CAS  Google Scholar 

  50. Gao Y, Voigt A, Zhou M, Sundmacher K (2008) Eur J Inorg Chem 24:3769–3775

    Google Scholar 

  51. Wang Z, Zhang Q, Kuehner D, Ivaska A, Niu L (2008) Green Chem 10:907–909

    Article  CAS  Google Scholar 

  52. Ren L, Meng L, Lu Q, Fei Z, Dyson PJ (2008) J Colloid Interface Sci 323:260–266

    Article  CAS  Google Scholar 

  53. Laranjo MT, Kist TBL, Benvenutti EV, Gallas MR, Costa TMH (2011) J Nanopart Res 13:4987–4995

    Article  CAS  Google Scholar 

  54. Wright JD, Sommerdijk NAJM (2001) Sol-gel materials chemistry and applications. CRC Press, Boca Raton

    Google Scholar 

  55. Karout A, Pierre AC (2009) J Solgel Sci Technol 49:364–372

    Article  CAS  Google Scholar 

  56. Liu Y, Wang MJ, Li J, Li ZY, He P, Liu HT, Li JH (2005) Chem Commun 13:1778–1780

  57. Shi F, Zhang Q, Li D, Deng Y (2005) Chem Eur J 11:5279–5288

    Article  CAS  Google Scholar 

  58. Karout A, Pierre AC (2007) J Non-Cryst Solids 353:2900–2909

    Article  CAS  Google Scholar 

  59. Selvan ST, Hayakawa T, Nogami M, Kobayashi Y, Liz-Marzán LM, Hamanaka Y, Nakamura A (2002) J Phys Chem B 106:10157–10162

    Article  CAS  Google Scholar 

  60. Tanahashi I, Manabe Y, Tohda T, Sasaki S, Nakamura A (1996) J Appl Phys 79:1244–1249

    Article  CAS  Google Scholar 

  61. Qiu J, Jiang X, Zhu C, Shirai M, Si J, Jiang N, Hirao K (2004) Angew Chem Int Ed 43:2230–2234

    Article  CAS  Google Scholar 

  62. Selvan ST, Ono Y, Nogami M (1998) Mater Lett 37:156–161

    Article  Google Scholar 

  63. Mine E, Yamada A, Kobayashi Y, Konno M, Liz-Marzan LM (2003) J Colloid Interface Sci 264:385–390

    Article  CAS  Google Scholar 

  64. Fredlake CP, Crosthwaite JM, Hert DG, Aki SNVK, Brennecke JF (2004) J Chem Eng Data 49:954–964

    Article  CAS  Google Scholar 

  65. The monoliths obtained with Tsint > 700°C are white and opaque. The presence of carbonate was confirmed by FTIR spectroscopic measurements

  66. Hao Y, Peng J, Hu S, Li J, Zhai M (2010) Thermochim Acta 501:78–83

    Article  CAS  Google Scholar 

  67. Hasan M, Kozhevnikov IV, Siddiqui MRH, Steiner A, Winterton N (1999) Inorg Chem 38:5637–5641

    Article  CAS  Google Scholar 

  68. Dash P, Scott RWJ (2009) Chem Commun 7:812–814

    Google Scholar 

  69. Zhang J, Gao Y, Alvarez-Puebla RA, Buriak JM, Fenniri H (2006) Adv Mater 18:3233–3237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by Fundação para a Ciência e a Tecnologia through Grant No. PEst-C/EQB/LA0006/2011. The authors would like to thank the Fundação para a Ciência e Tecnologia (FCT) for financial support REF: POCI 2010 under contract PTDC/EAT/67354/2006. A. Ruivo and M. Ventura would like to thank a Grant by FCT (SFRH/BD/46659/2008 and SFRH/BPD/40008/2007, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. T. Laia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 38963 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruivo, A., Ventura, M.G., Gomes da Silva, M.D.R. et al. Synthesis of gold nanoparticles in sol–gel glass porogens containing [bmim][BF4] ionic liquid. J Sol-Gel Sci Technol 68, 234–244 (2013). https://doi.org/10.1007/s10971-013-3159-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3159-6

Keywords

Navigation