Role of reaction atmosphere in preparation of potassium tantalate through sol–gel method


Potassium tantalate (KT) thin films and powders of both K2Ta2O6 (KT pyrochlore) and KTaO3 (KT perovskite) structures were prepared by means of chemical solution deposition method using Si(111) with ZnO and MgO buffer layers as a substrate. The influence of reaction atmosphere on reaction pathway and phase composition for both KT powders, and KT thin films has been studied mainly by means of powder diffraction and infrared spectroscopy. When an oxygen flow instead of static air atmosphere has been used the process of pyrolysis in oxygen runs over much narrower temperature interval (200–300 °C), relatively to air atmosphere (200–600 °C) and almost no (in case of powders), or no (in case of thin films) pyrochlore intermediate phase has been detected in comparison with treatment in air, where the pyrochlore phase is stable at temperatures 500–600 °C (powders). KT perovskite phase starts to crystallize at temperatures 50° and 150 °C lower compared to air atmosphere in case of powders and thin films, respectively. Microstructure formed by near-columnar grains and small grains of equiaxed shape was observed in films treated in oxygen and air atmosphere, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Sigman J, Bae HJ, Norton DP, Budai J, Boatner LA (2004) J Vac Sci Technol, A 22:2010–2013

    Article  CAS  Google Scholar 

  2. 2.

    Wenlong Y, Zhongxiang Z, Bin Y, Yongyuan J, Yanbo P, Hongguo S, Ying W (2012) App Surf Sci 258:3986–3990

    Article  Google Scholar 

  3. 3.

    Bae H, Sigman J, Norton DP, Boatner L (2005) Mater Sci Eng, B 117:87–91

    Article  Google Scholar 

  4. 4.

    Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2003) J Electroceramics 11:5–66

    Article  CAS  Google Scholar 

  5. 5.

    Ishai PB, de Oliveira CEM, Ryabkov Y, Agranat AJ, Feldman Y (2005) J Non Cryst Solids 351:2786–2792

    Article  Google Scholar 

  6. 6.

    Nichols BM, Hoerman BH, Hwang J-H, Mason TO, Wessels BW (2003) J Mater Res 18:106–110

    Article  CAS  Google Scholar 

  7. 7.

    Kužel R, Buršík J (2013) Thin Solid Films 530:2–8

    Article  Google Scholar 

  8. 8.

    Hirano S, Yogo T, Kikuta K, Morishita T, Ito Y (1992) J Am Ceram Soc 75:1701–1704

    Article  CAS  Google Scholar 

  9. 9.

    Kuang AX, Lu CJ, Huang GY, Wang SM (1995) J Crystal Growth 149:80–86

    Article  CAS  Google Scholar 

  10. 10.

    Suzuki K, Sakamoto W, Yogo T, Hirano S (1999) J Am Ceram Soc 82:1463–1466

    Article  CAS  Google Scholar 

  11. 11.

    Wu HG, Wang SM, Xu ZX, Fu J (2003) Mater Letters 57:2742–2746

    Article  CAS  Google Scholar 

  12. 12.

    Weber IT, Audebrand N, Bouquet V, Guiloux-Viry M, Perin A (2006) Solid State Sci 8:606–612

    Article  CAS  Google Scholar 

  13. 13.

    Buršík J, Drbohlav I, Vaněk P, Železný V (2004) J Europ Ceram Soc 24:55–60

    Google Scholar 

  14. 14.

    Tkach A, Vilarinho P, Almeida A (2011) J Europ Ceram Soc 31:2303–2308

    Article  CAS  Google Scholar 

  15. 15.

    McIntyre PC, Cima MJ, Man FN (1990) J Appl Phys 68:4183–4187

    Article  CAS  Google Scholar 

  16. 16.

    Schwartz RW, Clem PG, Voight JA, Byhoff ER, van Stry M, Headley TJ, Missert NA (1999) J Am Ceram Soc 82:2359–2367

    Article  CAS  Google Scholar 

  17. 17.

    Kumar S, Messing GL, White WB (1993) J Am Ceram Soc 76:617–624

    Article  CAS  Google Scholar 

  18. 18.

    Hasenkox U, Hoffmann S, Waser R (1998) J Sol-Gel Sci Technol 12:67–79

    Article  CAS  Google Scholar 

  19. 19.

    Li A, Wu D, Ling H, Yu T, Wang M, Yin X, Liu Z, Ming N (2000) J Appl Phys 88:1035–1041

    Article  CAS  Google Scholar 

  20. 20.

    Yamaguchi I, Manabe T, Kumagai T, Kondo W, Mizuta S (2000) Thin Solid Films 365:36–42

    Article  CAS  Google Scholar 

  21. 21.

    Yoon J-G, Kim K (1995) Appl Phys Lett 66:2661–2663

    Article  CAS  Google Scholar 

  22. 22.

    Coates J (2000) In: Meyers RA (ed) Encyclopedia of analytical chemistry (Interpretation of infrared spectra, a practical approach) Wiley, Chichester

  23. 23.

    Ross SD (1972) Inorganic infrared and Raman spectra. McGraw-Hill, London

    Google Scholar 

  24. 24.

    Whaley T (1973) In: Bailar JC, Emeleus HJ (ed) Comprehensive inorganic chemistry Vol. 1, Pergamon Press, Oxford

  25. 25.

    Bradley DC, Mehrotra RC, Gaur DP (1978) Metal Alkoxide. Academic Press, London

    Google Scholar 

  26. 26.

    Landolt—Börnstein New Series Encyclopedia (1970), Hellwege K-H (ed) Group III condensed matter, Vol 16, Springer, New York

  27. 27.

    Schwartz RW (1997) Chem Mater 9:2325–2340

    Article  CAS  Google Scholar 

  28. 28.

    Lakeman Ch DE, Xu Z, Payne D (1995) J Mater Res 10:2042–2051

    Article  Google Scholar 

  29. 29.

    Wilkinson AP, Speck JS, Cheetham AK, Natarajan S, Thomas JM (1994) Chem Mater 6:750–762

    Article  CAS  Google Scholar 

Download references


This work was supported by the Projects of the Grant Agency of Academy of Sciences of the Czech Republic No. 13-03708S, ALISI (EU Commission) and Ministry of Education, Youth, and Sports of the Czech Republic No. CZ.1.05/2.1.00/01.0017. The authors are grateful to the following collaborators: A. Petřina, K. Knížek and P. Bezdička for XRD measurements, and E. Večerníková, M. Maříková for FTIR measurements.

Author information



Corresponding author

Correspondence to Josef Buršík.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buršík, J., Vaněk, P. & Mika, F. Role of reaction atmosphere in preparation of potassium tantalate through sol–gel method. J Sol-Gel Sci Technol 68, 219–233 (2013).

Download citation


  • Potassium tantalate
  • Thin films
  • Sol–gel
  • Crystallization
  • Reaction atmosphere