Advertisement

Journal of Sol-Gel Science and Technology

, Volume 68, Issue 2, pp 193–203 | Cite as

Structural and optical characterizations of rare earth pentaphosphates LnP5O14 (Ln = La, Gd) synthesized by the sol–gel process

  • Aïcha Mbarek
  • Geneviève Chadeyron
  • Daniel Avignant
  • Damien Boyer
  • Mohieddine Fourati
  • Daniel Zambon
Original Paper

Abstract

The sol–gel chemistry route has successfully been used to prepare samples of LnP5O14 (Ln = La, Gd) pentaphosphates from lanthanides chlorides and phosphorous pentoxide dissolved in isopropanol. Crystallized powders of single phase were obtained after calcination of gels at 350 °C. The structural characterizations of materials were investigated by means of X-ray diffraction as well as infrared and Raman spectroscopies, whereas their thermal behavior has been studied by differential thermal analyse and thermogravimetric analyses. Powders morphology was analyzed by means of scanning electron microscopy and laser granulometry. The photoluminescence properties of the Eu3+ ions in sol–gel derived LaP5O14 and GdP5O14 samples were investigated and compared with homologous samples synthesized by the conventional solid state reaction.

Keywords

Pentaphosphates Sol–gel chemistry Photoluminescence Lanthanides 

References

  1. 1.
    Kubodera K, Miyazawa Y, Nakano J, Otsuka K (1978) Opt Commun 27:345CrossRefGoogle Scholar
  2. 2.
    Marion JE, Weber MJ (1991) Eur J Solid State Inorg Chem 28:271Google Scholar
  3. 3.
    Chinn SR, Hong HYP, Pierce JW (1976) Laser Focus 12:64Google Scholar
  4. 4.
    Yu YQ, Wang QY, Liu SZ (1985) Chin J Lumin 6:230Google Scholar
  5. 5.
    Auzel F (1966) CR Acad Sci 262B:1016Google Scholar
  6. 6.
    Moine B, Bizarri G (2006) Opt Mater 28:58–63CrossRefGoogle Scholar
  7. 7.
    Ettis H, Naïli H, Mhiri T (2007) Mater Chem Phys 102:275–280CrossRefGoogle Scholar
  8. 8.
    Nedelec JM, Mansuy C, Mahiou R (2003) J Molec Struct 165:651–653Google Scholar
  9. 9.
    Briche S, Zambon D, Boyer D, Chadeyron G, Mahiou R (2006) Opt Mater 20:615–620CrossRefGoogle Scholar
  10. 10.
    Beucher M (1969) The rare earths elements International Meeting Paris GrenobleGoogle Scholar
  11. 11.
    Bagieu-Beucher M, Tranqui D (1970) Bull Soc Fr Mineral Cristallogr 93:505–508Google Scholar
  12. 12.
    Durif A (1971) Bull Soc Fr Mineral Cristallogr 94:314–318Google Scholar
  13. 13.
    Mbarek A, Graia M, Chadeyron G, Zambon D, Bouaziz J, Fourati M (2009) J Solid State Chem 182:509–516CrossRefGoogle Scholar
  14. 14.
    Cole JM, Lees MR, Howard JAK, Newport RJ, Saunders GA, Schonherr E (2000) J Solid State Chem 150:377–382CrossRefGoogle Scholar
  15. 15.
    Porai-Koshits MA, Aslanov LA (1972) J Struct Chem 13:244–253CrossRefGoogle Scholar
  16. 16.
    Gözel G, Kizilyalli M, Kniep R (1997) J Solid State Chem 129:196CrossRefGoogle Scholar
  17. 17.
    Unger WK (1979) Solid State Commun 29:601–605CrossRefGoogle Scholar
  18. 18.
    Lixia L, Jiyang W, Zhaohe Y, Huizhu J, Yaogang L (1989) J Phys Chem 93:6867–6870CrossRefGoogle Scholar
  19. 19.
    Meyer K (1997) J Non-Cryst Solids 209:227–239CrossRefGoogle Scholar
  20. 20.
    Agrawal DK, White WB (1985) Mater Res Bull 20:697–703CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Aïcha Mbarek
    • 4
  • Geneviève Chadeyron
    • 1
    • 3
  • Daniel Avignant
    • 2
    • 3
  • Damien Boyer
    • 1
    • 3
  • Mohieddine Fourati
    • 4
  • Daniel Zambon
    • 2
    • 3
  1. 1.Institut de Chimie de Clermont-Ferrand, Clermont UniversitéEcole Nationale Supérieure de Chimie de Clermont-FerrandClermont-FerrandFrance
  2. 2.Institut de Chimie de Clermont-Ferrand, Clermont UniversitéUniversité Blaise PascalClermont-FerrandFrance
  3. 3.CNRS, UMR 6296, ICCFAubièreFrance
  4. 4.Laboratoire de Chimie Industrielle, Ecole Nationale d’Ingénieurs de SfaxUniversité de SfaxSfaxTunisia

Personalised recommendations