Journal of Sol-Gel Science and Technology

, Volume 68, Issue 1, pp 67–74

Low-temperature versus oxygen plasma treatment of water-based TiO2 paste for dye-sensitized solar cells

  • Mateja Hočevar
  • Urša Opara Krašovec
  • Marko Topič
Original Paper



Peroxotitanic acid Sol–gel TiO2 paste Low-temperature treatment Oxygen plasma treatment Dye-sensitized solar cell 


  1. 1.
    O’Regan B, Grätzel M (1991) A low–cost, high efficiency solar cells based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  2. 2.
    Hinsch A, Veurman W, Brandt H, Loayza Aguirre R, Bialecka K, Flarup Jensen K (2012) Worldwide first fully up-scaled fabrication of 60 × 100 cm2 dye solar module prototypes. Prog Photovolt Res Appl 20:698–710CrossRefGoogle Scholar
  3. 3.
    Hočevar M, Opara Krašovec U, Bokalič M, Topič M, Veurman W, Brandt H, Hinsch A (2013) Sol-gel based TiO2 paste applied in screen-printed dye-sensitized solar cells and modules. J Ind Eng Chem 19:1464–1469CrossRefGoogle Scholar
  4. 4.
    Hočevar M, Berginc M, Opara Krašovec U, Topič M (2012) In: Aparicio M, Jitianu A, Klein LC (eds) Sol–gel processing for conventional and alternative energy. Springer, New YorkGoogle Scholar
  5. 5.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663CrossRefGoogle Scholar
  6. 6.
    Miettunen K, Halme J, Lund P (2013) Metallic and plastic dye solar cells. WIREs Energy Environ 2:104–120Google Scholar
  7. 7.
    Lee KM, Hsu YC, Ikegami M, Miyasaka T, Thomas KRJ, Lin JT, Ho KC (2011) Co-sensitization promoted light harvesting for plastic dye-sensitized solar cells. J Power Sources 196:2416–2421CrossRefGoogle Scholar
  8. 8.
    Weerasinghea HC, Sirimanne PM, Franks GV, Simon GP, Cheng YB (2010) Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells. J Photochem Photobiol A Chem 213:30–36CrossRefGoogle Scholar
  9. 9.
    Kalyanasundaram K (2010) Dye-sensitized solar cells. EPFL Press, LausanneGoogle Scholar
  10. 10.
    Yamaguchi T, Tobe N, Matsumoto D, Nagai T, Arakawa H (2010) Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%. Sol Energ Mat Sol C 94:812–816CrossRefGoogle Scholar
  11. 11.
    Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334:629–634CrossRefGoogle Scholar
  12. 12.
    He X-L, Liu M, Yang G-J, Yao H-L, Fan S-Q, Li C-J (2013) Photovoltaic performance degradation and recovery of the flexible dye-sensitized solar cells by bending and relaxing. J Power Sources 226:173–178CrossRefGoogle Scholar
  13. 13.
    Yen W-H, Hsieh C-C, Hung C-Y, Wang H-W, Tsui M-C (2010) Flexible TiO2 working electrode for dye-sensitized solar cells. J Chin Chem Soc 57:1162–1166Google Scholar
  14. 14.
    Lin L-Y, Lee C-P, Tsai K-W, Yeh M-H, Chen C-Y, Vittal R, Wu C-G, Ho K-C (2012) Low-temperature flexible Ti/TiO2 photoanode for dye-sensitized solar cells with binder-free TiO2 paste. Prog Photovolt Res Appl 20:181–190CrossRefGoogle Scholar
  15. 15.
    Gutiérrez-Tauste D, Zumeta I, Vigil E, Hernández-Fenollosa MA, Domènech X, Ayllón JA (2005) New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation. J Photochem Photobiol A Chem 175:165–171CrossRefGoogle Scholar
  16. 16.
    Zhang D, Yoshida T, Minoura H (2003) Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface. Adv Mater 15:814–817CrossRefGoogle Scholar
  17. 17.
    Li Y, Yoo K, Lee D-K, Kim JH, Park N-G, Kim K, Ko MJ (2010) Highly bendable composite photoelectrode prepared from TiO2/polymer blend for low temperature fabricated dye-sensitized solar cells. Curr Appl Phys 10:E171–E175CrossRefGoogle Scholar
  18. 18.
    Lindström H, Holmberg A, Magnusson E, Malmqvist L, Hagfeldt A (2001) A new method to make dye-sensitized nanocrystalline solar cells at room temperature. J Photochem Photobiol A Chem 145:107–112CrossRefGoogle Scholar
  19. 19.
    Lindström H, Holmberg A, Magnusson E, Lindquist SE, Malmqvist L, Hagfeldt A (2001) A new method for manufacturing nanostructured electrodes on plastic substrates. Nano Lett 1:97–100CrossRefGoogle Scholar
  20. 20.
    Dürr M, Schmid A, Obermaier M, Rosselli S, Yasuda A, Nelles G (2005) Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nat Mater 4:607–611CrossRefGoogle Scholar
  21. 21.
    Ge L, Xu MX, E L, Tian YM, Fang HB (2005) Preparation of TiO2 thin films using inorganic peroxo titanic complex and autoclaved sols as precursors. Key Eng Mater 280:809–812CrossRefGoogle Scholar
  22. 22.
    Modic M, Junkar I, Vesel A, Mozetič M (2012) Aging of plasma treated surfaces and their effects on platelet adhesion and activation. Surf Coat Technol 213:98–104CrossRefGoogle Scholar
  23. 23.
    De Geyter N, Morent R, Leys C (2008) Influence of ambient conditions on the ageing behaviour of plasma-treated PET surfaces. Nucl Instrum Methods Phys Res B 266:3086–3090CrossRefGoogle Scholar
  24. 24.
    Mozetič M (2011) Extremely non-equilibrium oxygen plasma for direct synthesis of metal oxide nanowires on metallic substrates. J Phys D Appl Phys 44:1–9Google Scholar
  25. 25.
    Mancini SD, Nogueira AR, Rangel EC, Da Cruz NC (2013) Solid-state hydrolysis of postconsumer polyethylene terephthalate after plasma treatment. J Appl Polym Sci 127:1989–1996CrossRefGoogle Scholar
  26. 26.
    Eleršič K, Junkar I, Modic M, Zaplotnik R, Vesel A, Cvelbar U (2011) Modification of surface morphology of graphite by oxygen plasma treatment. Mater Tehnol 45:232–239Google Scholar
  27. 27.
    Liu R, Yang WD, Qiang LS (2012) Enhanced efficiency for dye-sensitized solar cells using a surface-treated photo-anode. J Power Sources 199:418–425CrossRefGoogle Scholar
  28. 28.
    Li Y, Ding JN, Yuan NY, Bai L, Hu HW, Wang XQ (2013) The influence of surface treatment on dye-sensitized solar cells based on TiO2 nanofibers. Mater Lett 97:74–77CrossRefGoogle Scholar
  29. 29.
    Tak Kim J, Ho Kim S (2011) Surface modification of TiO2 electrode by various over-layer coatings and O2 plasma treatment for dye sensitized solar cells. Sol Energ Mat Sol C 95:336–339CrossRefGoogle Scholar
  30. 30.
    Wang J, Lin ZQ (2010) Dye sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering. Chem Mater 22:579–584CrossRefGoogle Scholar
  31. 31.
    Berginc M, Opara Krašovec U, Hočevar M, Topič M (2008) Performance of dye-sensitized solar cells based on Ionic liquids: effect of temperature and iodine concentration. Thin Solid Films 516:7155–7159CrossRefGoogle Scholar
  32. 32.
    Hočevar M, Opara Krašovec U, Berginc M, Dražić G, Hauptman N, Topič M (2008) Development of TiO2 pastes modified with Pechini sol-gel method for high efficiency dye-sensitized solar cell. J Solgel Sci Technol 48:156–162CrossRefGoogle Scholar
  33. 33.
    Zaplotnik R, Vesel A, Mozetic M (2013) A powerful remote source of O atoms for the removal of hydrogenated carbon deposits. J Fusion Energy 32:78–87CrossRefGoogle Scholar
  34. 34.
    Hočevar M, Opara Krašovec U, Berginc M, Topič M (2010) One step preparation of TiO2 layer for high efficiency dye-sensitized solar cell. Acta Chim Slov 57:405–409Google Scholar
  35. 35.
    Drev M, Opara Krašovec U, Hočevar M, Berginc M, Kržmanc Maček M, Topič M (2011) Pechini based titanium sol as a matrix in TiO2 pastes for dye-sensitized solar cell application. J Solgel Sci Technol 59:245–251CrossRefGoogle Scholar
  36. 36.
    Hočevar M, Berginc M, Topič M, Opara Krašovec U (2010) Sponge-like TiO2 layers for dye-sensitized solar cells. J Solgel Sci Technol 53:647–654CrossRefGoogle Scholar
  37. 37.
    Ge L, Xu MX, Sun M, Fang HB (2006) Low-temperature synthesis of photocatalytic TiO2 thin film from aqueous anatase precursor sols. J Solgel Sci Technol 38:47–53CrossRefGoogle Scholar
  38. 38.
    Ge L, Xu MX (2007) Fabrication and characterization of TiO2 photocatalytic thin film prepared from peroxo titanic acid sol. J Solgel Sci Technol 43:1–7CrossRefGoogle Scholar
  39. 39.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218CrossRefGoogle Scholar
  40. 40.
    Tsoi S, Fok E, Sit JC, Veinot JGC (2004) Superhydrophobic, high surface area, 3-D SiO2 nanostructures through siloxane-based surface functionalization. Langmuir 20:10771–10774CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mateja Hočevar
    • 1
  • Urša Opara Krašovec
    • 1
  • Marko Topič
    • 1
  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations