Skip to main content
Log in

Morphological behavior of spherically granulated hydrated zirconium dioxide during its chemical and hydrothermal treatments

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hydrated zirconium dioxide samples were synthesized via original sol–gel route by two-step neutralization of zirconium oxychloride. Spherical granules of zirconia materials were prepared using a well-known “oil-drop” method. By the use of low temperature nitrogen adsorption, it is shown that surface fractal dimension of synthesized xerogels strongly depends on synthesis conditions, chemical and hydrothermal treatments. It is established that the change of synthesis conditions allows to obtain zirconium containing materials with developed porous structure: BET surface area—250–450 m2/g, pore diameter—2.0–4.2 nm, surface fractal dimension—2.28–2.63. It is shown that surface fractal dimension is an important parameter allowing to control the final properties of synthesized material and to determine the reasons of non-reproducibility of adsorptive, catalytic and other physical and chemical properties of zirconium containing oxides from synthesis to synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ren Z, Zhang G, Paul Chen J (2011) Adsorptive removal of arsenic from water by an iron–zirconium binary oxide adsorbent. J Colloid Interface Sci 358:230–237

    Article  Google Scholar 

  2. Garcia CM, Teixeira S, Marciniuk LL, Schuchardt U (2008) Transesterification of soybean oil catalyzed by sulfated zirconia. Bioresour Technol 99:6608–6613

    Article  Google Scholar 

  3. Liang L, Xu Y, Wu D, Sun Y (2009) A simple sol–gel route to ZrO2 films with high optical performances. Mater Chem Phys 114:252–256

    Article  Google Scholar 

  4. Judes J, Kamaraj V (2009) Sol–gel preparation and characterization of ceria stabilized zirconia minispheres. J Sol–Gel Sci Technol 49:159–165

    Article  Google Scholar 

  5. Parvulescu V, Bonnemann H (2001) Preparation and characterisation of mesoporous zirconium oxide. Appl Catal A 214:273–287

    Article  Google Scholar 

  6. Motoaki A, Kikuo O, Scongwon M, Noboru T, Yasuo K (1989) Preparation of ultrafine zirconium dioxide particles by thermal decomposition of zirconium alkoxide vapour. J Mater Sci 24:2275–2280

    Article  Google Scholar 

  7. Sakka S (2005) Handbook of sol–gel science and technology: processing, characterization and applications. Kluwer, Dordrecht

    Google Scholar 

  8. Kanibolotsky VA, Meleshevych (Chepurna) IK, Kylivnyk YuM, Yakovlev VI, Strelko VV (2009) The method of materials preparation based on polyvalent metal hydroxides or oxides (Ukr), UAP 85863

  9. Chepurna IK, Kanibolotsky VA, Yakovlev VI, Kylivnyk YuM, Strelko VV (2009) The method of materials preparation based on polyvalent metal hydroxides or oxides (Ukr), UAP 85881

  10. Chepurna I, Smotraev R, Kanibolotsky V, Strelko V (2011) Colloidal and chemical aspects of nanosized hydrated zirconium dioxide synthesized via a sol–gel process. J Colloid Interface Sci 356:404–411

    Article  Google Scholar 

  11. Zeng YW, Riello P, Benedetti A, Fagherazzi G (1995) Fractal model of amorphous and semicrystalline nano-sized zirconia aerogels. J Non-Cryst Solids 185:78–83

    Article  Google Scholar 

  12. Mandelbrot BB (1982) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  13. Wu ZG, Zhao YX, Liu DS (2004) The synthesis and characterization of mesoporous silica–zirconia aerogels. Microporous Mesoporous Mater 68:127–132

    Article  Google Scholar 

  14. Gao Y, Masuda Y, Ohta H, Kuomuto K (2004) Room-temperature preparation of ZrO2 precursor thin film in an aqueous peroxozirconium-complex solution. Chem Mater 16:2615–2622

    Article  Google Scholar 

  15. Stachs O, Gerber T, Petkov V (1999) The structure formation of zirconium oxide gels in alcoholic solution. J Sol–Gel Sci Technol 15:23–30

    Article  Google Scholar 

  16. Hu M, Zielke J, Byers C (1999) Small-angle x-ray scattering studies of early-stage colloid formation by thermohydrolytic polymerization of aqueous zirconyl salt solutions. J Mater Res 14:103–113

    Article  Google Scholar 

  17. Lee CK, Tsay CS (1998) Surface fractal dimensions of alumina and aluminum borate from nitrogen isotherms. J Phys Chem B 102:4123–4130

    Article  Google Scholar 

  18. Baran V, Caletka R, Tympl M (1977) Application of the sol–gel method for the preparation of some inorganic ion-exchangers. J Radioanal Nucl Chem 19:353–359

    Google Scholar 

  19. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London

    Google Scholar 

  20. Keltsev NV (1984) The Fundamentals of Adsorption Technology (Russ). Chemistry, Moscow

  21. Meleshevych (Chepurna) I, Pakhovchyshyn S, Kanibolotsky V, Strelko V (2007) Rheological properties of hydrated zirconium dioxide. Colloids Surf A 298: 274–279

    Google Scholar 

  22. Parvulescu VI et al (2001) Preparation and characterisation of mesoporous zirconium oxide. Appl Catal A 214:273–287

    Article  Google Scholar 

  23. Jaenicke S, Chuah GK, Raju V, Nie YT (2008) Structural and morphological control in the preparation of high surface area zirconia. Catal Surv Asia 12:153–169

    Article  Google Scholar 

  24. Trypolskyi AI, Gurnyk TM, Strizhak PE (2008) Textural and fractal characteristics of zirconia stabilized by yttrium (Russ). Theor Exp Chem 44:338–342

    Google Scholar 

  25. Wei Q, Wang D (2003) Pore surface fractal dimension of sol–gel-derived Al2O3–SiO2 membranes. Mater Lett 57:2015–2020

    Article  Google Scholar 

  26. Pfeifer P, Avnir D (1983) Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. J Chem Phys 79:3558–3563

    Article  Google Scholar 

  27. Avnir D, Farin D, Pfeifer P (1984) Molecular fractal surfaces. Nature 308:261–263

    Article  Google Scholar 

  28. Fadeev AYu, Borisova OR, Lisichkin GV (1996) Determination of fractal dimension for a range of porous silica (Russ). J Phys Chem 70:720–722

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iryna Chepurna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chepurna, I., Kanibolotsky, V. & Strelko, V. Morphological behavior of spherically granulated hydrated zirconium dioxide during its chemical and hydrothermal treatments. J Sol-Gel Sci Technol 68, 500–508 (2013). https://doi.org/10.1007/s10971-013-3119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3119-1

Keywords

Navigation