Skip to main content

Advertisement

Log in

Crystallization, mechanical properties and in vitro bioactivity of sol–gel derived Na2O–CaO–SiO2–P2O5 glass–ceramics by partial substitution of CaF2 for CaO

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The partial substitution of CaF2 for CaO in the Na2O–CaO–SiO2–P2O5 system was conducted by the sol–gel method and a comparison of the glass–ceramic properties was reported. Based on thermogravimetric and differential thermal analysis, the gels were sintered with a suitable heat treatment procedure. The glass–ceramic properties were characterized by X-ray diffraction, fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectrometer and so on, and the bioactivity of the glass–ceramic was evaluated by in vitro assays in simulated body fluid. Results indicate that with the partial substitution of CaF2 for CaO in glass composition, the volume density, apparent porosity, bending strength and microhardness of the glass–ceramics have been significantly improved. Furthermore, CaF2 promotes glass crystallization which does not inhibit the glass–ceramic bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5:117–141

    Article  Google Scholar 

  2. Cabal B, Malpartida F, Torrecillas R, Hoppe A, Boccaccini AR, Moya JS (2011) The development of bioactive glass–ceramic substrates with biocide activity. Adv Eng Mater 13:B462–B466

    Article  Google Scholar 

  3. Padmanabhann SK, Gervaso F, Carrozzo M, Scalera F, Sannino A, Licciulli A (2013) Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering. Ceram Int 39:619–627

    Article  Google Scholar 

  4. Vitale-Brovarone C, Nunzio SD, Bretcanu O, Vern E (2004) Macroporous glass–ceramic materials with bioactive properties. J Mater Sci Mater Med 15:209–217

    Article  CAS  Google Scholar 

  5. Martorana S, Fedele A, Mazzocchi M, Bellosi A (2009) Surface coatings of bioactive glasses on high strength ceramic composites. Appl Surf Sci 255:6679–6685

    Article  CAS  Google Scholar 

  6. Singh VK, Reddy BR (2012) Synthesis and characterization of bioactive zirconia toughened alumina doped with HAp and fluoride compounds. Ceram Int 38:5333–5340

    Article  CAS  Google Scholar 

  7. Simon V, Lucacel RC, Titorencu I, Jinga V (2011) Physical properties and biological performance of bioactive glasses and glass–ceramics tested in vitro. Key Eng Mater 1463:85–89

    Article  Google Scholar 

  8. Soares P, Laurindo CAH, Torres R, Kuromoto N, Peitl O, Zanotto E (2012) Effect of a bioactive glass–ceramic on the apatite nucleation on titanium surface modified by micro-arc oxidation. Surf Coat Technol 206:4601–4605

    Article  CAS  Google Scholar 

  9. Saravanapavan P, Hench LL (2000) Bioactive sol–gel glasses in the CaO–SiO2 system. Key Eng Mater 416:609

    Google Scholar 

  10. Chatzistavrou X, Tsigkou O, Aminb HD, Paraskevopoulos KM, Salih V, Boccaccini AR (2012) Sol–gel based fabrication and characterization of new bioactive glass–ceramic composites for dental applications. J Eur Ceram Soc 32:3051–3061

    Article  CAS  Google Scholar 

  11. Chen XF, Meng YC, Yu LL, Naru Z (2008) Investigation on bio-mineralization of melt and sol–gel derived bioactive glasses. Appl Surf Sci 255:562–564

    Article  CAS  Google Scholar 

  12. Ma J, Chen CZ, Wang DG, Meng XG (2010) In vitro degradability and bioactivity of mesoporous CaO–MgO–P2O5–SiO2 glasses synthesized by sol–gel method. J Sol–Gel Sci Technol 54:69–76

    Article  CAS  Google Scholar 

  13. Castillo J, Yanes AC, Méndez-Ramos J, Velázquez JJ, Rodríguez VD (2011) Structural and luminescent study in lanthanide doped sol–gel glass–ceramics comprising CeF3 nanocrystals. J Sol–Gel Sci Technol 60:170–176

    Article  Google Scholar 

  14. Assem EE (2005) Effect of replacing calcium oxide with calcium fluoride on some physical properties of borosilicate glass ceramics. J Phys D Appl Phys 38:942–945

    Article  CAS  Google Scholar 

  15. Sanada T, Seto H, Morimoto Y, Yamamoto K, Wada N, Kojima K (2010) Luminescence and long-lasting afterglow in Mn2+ and Eu3+ co-doped ZnO–GeO2 glasses and glass ceramics prepared by sol–gel method. J Sol–Gel Sci Technol 56:82–86

    Article  CAS  Google Scholar 

  16. Ghasemzadeh M, Nemati A, Baghshahi S (2012) Effects of nucleation agents on the preparation of transparent glass–ceramics. J Eur Ceram Soc 32:2989–2994

    Article  CAS  Google Scholar 

  17. Guo HW, Gong YX, Gao SY (2010) Preparation of high strength foam glass–ceramics from waste cathode ray tube. Mater Lett 64:997–999

    Article  CAS  Google Scholar 

  18. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass–ceramic A-W. J Biomed Mater Res 24:721–734

    Article  CAS  Google Scholar 

  19. Liu ZH (1994) Volume VI of the handbook of analytical chemistry. Chemical Industry Press, Beijing

    Google Scholar 

  20. Hong Z, Reis RL, Mano JF (2009) Preparation and in vitro characterization of novel bioactive glass ceramic nanoparticles. J Biomed Mater Res 88:304–313

    Article  Google Scholar 

  21. Pacurariu C, Lazau RI, Lazau I, Ianos R, Tita B (2009) Non-isothermal crystallization kinetics of some basaltic glass–ceramics containing CaF2 as nucleation agent. J Therm Anal Calorim 97:507–514

    Article  CAS  Google Scholar 

  22. Atiar RM, Bikram JB (2009) Microstructure, mechanical, and in vitro properties of mica glass–ceramics with varying fluorine content. J Mater Sci Mater Med 20:869–882

    Article  Google Scholar 

  23. Peitl O, Zanotto ED, Hench LL (2001) Highly bioactive P2O5–Na2O–CaO–SiO2 glass–ceramics. J Non Cryst Solids 292:115–126

    Article  CAS  Google Scholar 

  24. Mukherjee DP, Das SK (2013) SiO2–Al2O3–CaO glass–ceramics: effects of CaF2 on crystallization, microstructure and properties. Ceram Int 39:571–578

    Article  CAS  Google Scholar 

  25. Serra J, Gonzalez P, Liste S, Chiussi S (2002) Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J Mater Sci Mater Med 13:1221–2122

    Article  CAS  Google Scholar 

  26. Brauer DS, Anjum MN, Mneimne M, Wilson RM, Doweidar H, Hill RG (2012) Fluoride-containing bioactive glass–ceramics. J Non Cryst Solids 358:1438–1442

    Article  CAS  Google Scholar 

  27. Jallot E, Benhayoune H, Kilian L, Irigaray JL, Balossier G, Bonhomme P (2000) Growth and dissolution of apatite precipitates formed in vivo on the surface of a bioactive glass coating film and its relevance to bioactivity. J Phys D Appl Phys 33:2775–2780

    Article  CAS  Google Scholar 

  28. Arcos D, Greenspan DC, Vallet-Regí M (2002) Influence of the Stabilization temperature on textural and structural features and ion release in SiO2–CaO–P2O5 sol–gel glasses. Chem Mater 14:1515–1522

    Article  CAS  Google Scholar 

  29. Izquierdo-Barba I, Salinas AJ, Vallet-Regí M (2000) Effect of the continuous solution exchange on the in vitro reactivity of a CaO–SiO2 sol–gel glass. J Biomed Mater Res 51:191–199

    Article  CAS  Google Scholar 

  30. Attwood D, Mosquera V, Rey C, Garcia M (1991) Temperature dependence of molar volume and adiabatic compressibility of aqueous solutions of an amphiphilic phenothiazine drug. J Colloid Interface Sci 147:316–320

    Article  CAS  Google Scholar 

  31. Ma J, Chen CZ, Wang DG, Meng XG, Shi JZ (2010) Influence of the sintering temperature on the structural feature and bioactivity of sol–gel derived SiO2–CaO–P2O5 bioglass. Ceram Int 36:1911–1916

    Article  CAS  Google Scholar 

  32. Landi E, Celotti G, Logroscino G, Tampieri A (2003) Carbonate hydroxyapatite as bone substitute. J Eur Ceram Soc 23:293–2937

    Article  Google Scholar 

  33. Sato K, Kogure T, Kumagai Y, Tanaka J (2001) Crystal orientation of hydroxyapatite induced by ordered carboxyl groups. J Colloid Interface Sci 240:133–138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Department of Science and Technology of Shandong Province (Grant No. 2009GG10003032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. G. Wang or C. Z. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H.C., Wang, D.G., Hu, J.H. et al. Crystallization, mechanical properties and in vitro bioactivity of sol–gel derived Na2O–CaO–SiO2–P2O5 glass–ceramics by partial substitution of CaF2 for CaO. J Sol-Gel Sci Technol 67, 56–65 (2013). https://doi.org/10.1007/s10971-013-3050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3050-5

Keywords

Navigation