Skip to main content
Log in

Core-shell structure CdS/TiO2 for enhanced visible-light-driven photocatalytic organic pollutants degradation

  • OriginalPaper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

CdS modified mesoporous titania core-shell spheres (CdS/CS-TiO2) with enhanced visible-light activity were synthesized by an in situ method. This method included two steps: planting CdO into the framework of anatase TiO2 core-shell spheres and then converting it to CdS by ion-exchange. The physicochemical properties of the obtained samples were investigated by X-ray diffraction, scanning electron microscopy, transmission electronic micrograph, UV–vis diffuse reflectance spectra and nitrogen sorption. The in situ strategy resulted in CdS quantum dots highly dispersed in CS-TiO2 without destroying the mesoporous core-shell structure. Compared with CS-TiO2, the as-synthesized samples exhibited stronger visible-light absorption capability and greatly enhanced photocatalytic activity toward the degradation of Rhodamine B and 4-chlorophenol aqueous solution under visible light irradiation (λ > 420 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  2. Du J, Qi J, Wang D, Tang ZY (2012) Facile synthesis of Au@TiO2 core–shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy.Environ.Sci 5:6914–6918

    Article  CAS  Google Scholar 

  3. Shang SQ, Jiao XL, Chen DR (2012) Template-free fabrication of TiO2 hollow spheres and their photocatalytic properties. ACS Appl Mater Inter 4:860–865

    Article  CAS  Google Scholar 

  4. Guo WX, Zhang F, Lin CJ, Wang ZL (2012) Direct growth of TiO2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange. Adv Mater 24:4761–4764

    Article  CAS  Google Scholar 

  5. Wang CH, Zhang XT, Zhang YL, Jia Y, Yang JK, Sun PP, Liu YC (2011) Hydrothermal growth of layered titanate nanosheet arrays on titanium foil and their topotactic transformation to heterostructured TiO2 photocatalysts. J Phys Chem C 115:22276–22285

    Article  CAS  Google Scholar 

  6. Hwang YJ, Hahn C, Liu B, Yang PD (2012) Photoelectrochemical properties of TiO2 nanowire arrays: A study of the dependence on length and atomic layer deposition coating. ACS Nano 6:5060–5069

    Article  CAS  Google Scholar 

  7. Xia MX, Wang FX, Wang YC, Pan AL, Zou BS, Zhang QL, Wang YG (2010) TiO2 nanowires sensitized with CdS quantum dots and the surface photovoltage properties. Mater Lett 64:1688–1690

    Article  CAS  Google Scholar 

  8. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Edit 50:2904–2939

    Article  CAS  Google Scholar 

  9. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218

    Article  CAS  Google Scholar 

  10. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented Tio2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol C 90:2011–2075

    Article  CAS  Google Scholar 

  11. Li HX, Bian ZF, Zhu J, Zhang DQ, Li GS, Huo YN, Li H, Lu YF (2007) Mesoporous titania spheres with tunable chamber structure and enhanced photocatalytic activity. J Am Chem Soc 129:8406–8407

    Article  CAS  Google Scholar 

  12. Wang Y, Meng YL, Ding HM, Shan YK, Zhao X, Tang XZ (2008) A highly efficient visible-light-activated photocatalyst based on bismuth- and sulfur-codoped TiO2. J Phys Chem C 112:6620–6626

    Article  CAS  Google Scholar 

  13. Huo YN, Zhang J, Chen XF, Li HX (2012) Synthesis of Hollow CdS-TiO2 Microspheres with enhanced visible-light photocatalytic activity. Int J Photoenergy 907290

  14. Qian SS, Wang CS, Liu WJ, Zhu YH, Yao WJ, Lu XH (2011) An enhanced CdS/TiO2 photocatalyst with high stability and activity: effect of mesoporous substrate and bifunctional linking molecule. J Mater Chem 21:4945–4952

    Article  CAS  Google Scholar 

  15. Li CL, Yuan JA, Han BY, Jiang L, Shangguan WF (2010) TiO2 nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation. Int J Hydrog Energy 35:7073–7079

    Article  CAS  Google Scholar 

  16. Yang L, Luo S, Li Y, Xiao Y, Kang Q, Cai Q (2010) High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. Environ Sci Technol 44:7641–7646

    Article  CAS  Google Scholar 

  17. Li JL, Liu L, Yu Y, Tang YW, Li HL, Du FP (2004) Preparation of highly photocatalytic active nano-size TiO2-Cu2O particle composites with a novel electrochemical method. Electrochem Commun 6:940–943

    Article  CAS  Google Scholar 

  18. Li TL, Lee YL, Teng HS (2011) CuInS2 quantum dots coated with CdS as high-performance sensitizers for TiO2 electrodes in photoelectrochemical cells. J Mater Chem 21:5089–5098

    Article  CAS  Google Scholar 

  19. Yun JH, Ng YH, Huang SJ (2011) Wrapping the walls of n-TiO2 nanotubes with p-CuInS2 nanoparticles using pulsed-electrodeposition for improved heterojunction photoelectrodes. Chem Commun 47:11288–11290

    Article  CAS  Google Scholar 

  20. Bai SL, Li HY, Guan YJ, Jiang ST (2011) The enhanced photocatalytic activity of CdS/TiO2 nanocomposites by controlling CdS dispersion on TiO2 nanotubes. Appl Surf Sci 257:6406–6409

    Article  CAS  Google Scholar 

  21. Cushing SK, Li JT, Meng FK, Senty TR, Suri S, Zhi MJ, Li M, Bristow AD, Wu NQ (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134:15033–15041

    Article  CAS  Google Scholar 

  22. Li JT, Cushing SK, Bright J, Meng FK, Senty TR, Zheng P, Bristow AD, Wu NQ (2013) Ag@Cu2O core–shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal 3:47–51

    Article  CAS  Google Scholar 

  23. Zong X, Yan HJ, Wu GP, Ma GJ, Wen FY, Wang L, Li C (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7177

    Article  CAS  Google Scholar 

  24. Li GS, Zhang DQ, Yu JC (2009) A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2. Environ Sci Technol 43:7079–7085

    Article  CAS  Google Scholar 

  25. Li L, Yang YW, Huang XH, Li GH, Zhang LD (2005) Fabrication and characterization of single-crystalline ZnTe nanowire arrays. J Phys Chem B 109:12394–12398

    Article  CAS  Google Scholar 

  26. Yoon M, Seo M, Jeong C, Jang JH, Jeon KS (2005) Synthesis of liposome-templated titania nanodisks: optical properties and photocatalytic activities. Chem Mater 17:6069–6079

    Article  CAS  Google Scholar 

  27. Li GS, Zhang DQ, Yu JC (2008) Ordered mesoporous BiVO4 through nanocasting: a superior visible light-driven photocatalyst. Chem Mater 20:3983–3992

    Article  CAS  Google Scholar 

  28. Kang MG, Han HE, Kim KJ (1999) Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2. J Photochem Photobio A Chem 125:119–125

    Article  CAS  Google Scholar 

  29. Zhang Y, Zhang P, Huo YN, Zhang DQ, Li GS, Li HX (2012) Ethanol supercritical route for fabricating bimodal carbon modified mesoporous TiO2 with enhanced photocatalytic capability in degrading phenol. Appl Catal B Environ 115:236–244

    Article  Google Scholar 

  30. Jiang B, Zhang P, Zhang Y, Wu L, Li HX, Zhang DQ, Li GS (2012) Self-assembled 3d architectures of Bi2Tio4F2 as a new durable visible-light photocatalyst. Nanoscale 4:455–460

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the National Natural Science Foundation of China (21007040, 21047009), and the Programmes of Shanghai Municipality (11PJ1407500, 11SG42, 10160503200, DXL122, S30406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guisheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, B., Yang, X., Li, X. et al. Core-shell structure CdS/TiO2 for enhanced visible-light-driven photocatalytic organic pollutants degradation. J Sol-Gel Sci Technol 66, 504–511 (2013). https://doi.org/10.1007/s10971-013-3038-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3038-1

Keywords

Navigation