Skip to main content
Log in

Notable shift of ultraviolet intensity on Sn-doped ZnO nanostructure fabricated by sol–gel method

  • OriginalPaper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sn-doped ZnO (SZO) thin films are deposited by sol–gel dip-coating method with Sn content at 0 at.% and 1–15 at.% with an increment of 2 at.%. The structure and luminescence of the films are investigated. X-ray diffraction results indicate that all the SZO samples show preferential orientation along the (002) direction, and the scanning electron microscope exhibits that the surface morphology of the films change from nanoparticles to nanorods with increasing Sn concentration. X-ray photoelectron spectroscopy reveals that Sn exists as valence of +4 in the matrix. The photoluminescence peaks at 381 and 398 nm are observed in all the samples. The ratio of intensity of peak at 381 nm to that of peak at 398 nm differed markedly. The intensity of peak at 398 nm might be due to the response for the Sn atoms, while the intensity of peak at 381 nm is probably related to the quantum size effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nakarmi ML, Nepal N, Lin JY, Jiang HX (2009) Appl Phys Lett 94:091903

    Article  Google Scholar 

  2. Zhao JL, Tan ST, Wan SI, Sun XW, Liu W, Chua SJ (2009) Appl Phys Lett 94:093506

    Article  Google Scholar 

  3. Zhang F, Yang WF, Huang HL, Chen XP, Wu ZY, Zhu HL, Qi HL, Yao JK, Fan ZX, Shao JD (2008) Appl Phys Lett 92:251102

    Article  Google Scholar 

  4. Ilican S, Caglar Y, Caglar M, Yakuphanoglu F (2008) Appl Surf Sci 255:2353

    Article  CAS  Google Scholar 

  5. Yakuphanoglu F, Caglar Y, Ilican S, Caglar M (2007) Phys B 394:86

    Article  CAS  Google Scholar 

  6. Wang XB, Song C, Geng KW, Zeng F, Pan F (2007) Appl Surf Sci 253:6905

    Article  CAS  Google Scholar 

  7. Khomchenko VS, Kryshtab TG, Savina AK, Zavyalova LV, Roshchina NN, Rodionov VE, Lytvyn OS, Kushnirenko VI, Khachatryan VB, Andraca-Adame JA (2007) Superlattices Microstruct 42:94

    Article  CAS  Google Scholar 

  8. Chen DY, Hsu CY (2008) Superlattices Microstruct 44:742

    Article  CAS  Google Scholar 

  9. Venkatachalam S, Iida Y, Kano Y (2008) Superlattices Microstruct 44:127

    Article  CAS  Google Scholar 

  10. Caglar Y, Ilican S, Caglar M, Yakuphanoglu F (2007) Spectrochim Acta A 67:1113

    Article  Google Scholar 

  11. Vaezi MR, Sadrnezhaad SK (2007) Mater Sci Eng B 141:23

    Article  CAS  Google Scholar 

  12. Ilican S, Caglar Y, Caglar M, Yakuphanoglu F (2008) J. Cui. Physica E 41:96

    Article  CAS  Google Scholar 

  13. Caglar M, Ilican S, Caglar Y, Yakuphanoglu F (2008) J Mater Sci Mater Electron 19:704

    Article  CAS  Google Scholar 

  14. Li SY, Lin P, Lee CY, Tseng TY, Huang CJ (2004) J Phys D Appl Phys 37:2274

    Article  CAS  Google Scholar 

  15. Santos AMP, Santos EJP (2007) Mater Lett 61:3432

    Article  CAS  Google Scholar 

  16. Murali KR (2007) J Phys Chem Solid 68:2293

    Article  CAS  Google Scholar 

  17. Liu JM, Zhao XR, Duan LB, Cao MM, Sun HN, Shao JF, Chen S, Xie HY, Chang X, Chen CL (2011) Appl Surf Sci 257:10156

    Article  CAS  Google Scholar 

  18. Hsieh PT, Chen YC, Kao KS, Lee MS, Cheng CC (2007) J Eur Ceram Soc 27:3815

    Article  CAS  Google Scholar 

  19. Muilenbenger GE (ed) (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prarie, MN

    Google Scholar 

  20. Dolbec R, El Khakani MA, Serventi AM, Saint-Jacques RG (2003) Sens Actuators B 93:566

    Article  CAS  Google Scholar 

  21. Sheini FJ, More MA, Jadkar SR, Patil KR, Pillai VK, Joag DS (2010) J Phys Chem C 114:3843

    Article  CAS  Google Scholar 

  22. Deng R, Zhang XT, Zhang E, Liang Y, Liu Z, Xu HY, Hark S (2007) J Phys Chem C 111:13013

    Article  CAS  Google Scholar 

  23. Umar Ahmad, Caue Ribeiro A, Al-Hajry YoshitakeMasuda, Hahn YB (2009) J Phys Chem C 113:14715

    Article  CAS  Google Scholar 

  24. Umar A, Hahn YB (2008) Cryst Growth Des 8:2741

    Article  CAS  Google Scholar 

  25. De la Rosa E, Sepu lveda-Guzman S, Reeja-Jayan B, Torres A, Salas P, Elizondo N, Jose Yacaman M (2007) J Phys Chem C 111:8489

    Article  Google Scholar 

  26. Shalish I, Temkin H, Narayanamurti V (2004) Phys Rev B 69:245401

    Article  Google Scholar 

  27. Kim Y, Kang S (2011) Acta Mater 59:3024

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 51172186) and Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20106102120051) and NPU Foundation for Fundamental Research (NPU-FFR-JC2010236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoru Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Zhao, X., Duan, L. et al. Notable shift of ultraviolet intensity on Sn-doped ZnO nanostructure fabricated by sol–gel method. J Sol-Gel Sci Technol 66, 301–305 (2013). https://doi.org/10.1007/s10971-013-3008-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3008-7

Keywords

Navigation