Journal of Sol-Gel Science and Technology

, Volume 65, Issue 3, pp 359–366 | Cite as

Non-aqueous sol–gel preparation of carbon-supported nickel nanoparticles

Original Paper


This work addresses the novel non-aqueous sol–gel process preparation of carbon-supported nickel nanoparticles. In the sol–gel process, ethanol, nickel nitrate or nickel (П) acetylacetonate, and citric acid were used as solvent, source of metallic element, and chelating agent, respectively. Hexadecylamine (HDA), oleic acid and oleylamine were used as surfactants. The calcination process was performed under protecting Ar or N2 flowing. Carbon supported nickel nanoparticles can be prepared by this sol–gel process. Moreover, no grain growth occurs in a temperature range of 200 K, meaning that the grain size of the nickel nanoparticles can be controlled in this sol–gel process. The nickel nanoparticles can display typical superparamagnetic behavior at room temperature when HDA has been used. This novel method is expected to have wide applications in the field of metallic nanoparticles.


Sol–gel preparation Colloidal processing Nanoparticles Magnetic materials 


  1. 1.
    Lagrow AP, Ingham B, Cheong S, Williams GVM, Dotzler C, Toney MF, Jefferson DA, Corbos EC, Bishop PT, Cookson J, Tiller RD (2012) J Am Chem Soc 134:855–858CrossRefGoogle Scholar
  2. 2.
    Singh SK, Lu ZH, Xu Q (2011) Eur J Inorg Chem 14:2232–2237CrossRefGoogle Scholar
  3. 3.
    Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh HJ, Park JH, Bae CJ, Park JG, Hyeon T (2005) Adv Mater 17:429–434CrossRefGoogle Scholar
  4. 4.
    Sherlock SP, Dai HJ (2011) Nano Res 4:1248–1260CrossRefGoogle Scholar
  5. 5.
    Metin Ö, Mazumder V, Özkar S, Sun SH (2010) J Am Chem Soc 132:1468–1469CrossRefGoogle Scholar
  6. 6.
    Song HJ, Jia XH, Yang XF, Tang H, Li Y, Su YT (2012) CrystEngComm 14:405–410CrossRefGoogle Scholar
  7. 7.
    Couto GG, Klein JJ, Schreiner WH, Mosca DH, de Oliveira AJA, Zarbin AJG (2007) J Colloid Interface Sci 311:461–468CrossRefGoogle Scholar
  8. 8.
    Cordente N, Respaud M, Senocq F, Casanove MJ, Amiens C, Chaudret B (2001) Nano Lett 1:565–568CrossRefGoogle Scholar
  9. 9.
    Carenco S, Boissière C, Nicole L, Sanchez C, Le Floch P, Mézailles N (2010) Chem Mater 22:1340–1349CrossRefGoogle Scholar
  10. 10.
    Zhang DQ, Li GS, Yu JC (2009) Cryst Growth Des 9:2812–2815CrossRefGoogle Scholar
  11. 11.
    Jiang YW, Yang SG, Hua ZH, Huang HB (2009) Angew Chem Int Ed 48:8529–8531CrossRefGoogle Scholar
  12. 12.
    Li PY, Syed JA, Meng XK (2012) J Alloy Compound 512:47–51CrossRefGoogle Scholar
  13. 13.
    Li PY, Cao ZH, Meng XK (2012) Dalton Trans 41:12101–12105CrossRefGoogle Scholar
  14. 14.
    Tao AR, Habas S, Yang PD (2008) Small 4:310–325CrossRefGoogle Scholar
  15. 15.
    Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Science 287:1989–1992CrossRefGoogle Scholar
  16. 16.
    Wang C, Daimon H, Lee YM, Kim J, Sun SH (2007) J Am Chem Soc 129:6974–6975CrossRefGoogle Scholar
  17. 17.
    He L (2010) J Magn Magn Mater 322:1991–1993CrossRefGoogle Scholar
  18. 18.
    Ge MY, Han LY, Wiedwald U, Xu XB, Wang C, Kuepper K, Ziemann P, Jiang JZ (2010) Nanotechnology 21:425702CrossRefGoogle Scholar
  19. 19.
    Vempaire D, Miraglia S, Pelletier J, Fruchart D, Hlil EK, Ortega L, Sulpice A, Fettar F (2009) J Alloy Compound 480:225–229CrossRefGoogle Scholar
  20. 20.
    Kawamura M, Abe Y, Sasaki K (2000) Vacuum 59:721–726CrossRefGoogle Scholar
  21. 21.
    Lin J, Yu M, Lin CK, Liu XM (2007) J Phys Chem C 111:5835–5845CrossRefGoogle Scholar
  22. 22.
    Petrova N, Todorovsky D, Angelova S, Mehandjiev D (2008) J Alloy Compound 454:491–500CrossRefGoogle Scholar
  23. 23.
    Liu YJ, Hu JH, Huang ZH, Fang MH (2011) J Sol Gel Sic Technol 58:664–668CrossRefGoogle Scholar
  24. 24.
    Zhang YJ, Yang YT, Liu Y, Wang YX, Yang LL, Wei MB, Fan HG, Zhai HJ, Liu XY, Liu YQ, Yang NN, Wu YH, Yang JH (2011) J Phys D Appl Phys 44:295003CrossRefGoogle Scholar
  25. 25.
    Guo K, Chen HH, Guo XX, Yang XX, Xu FF, Zhao JT (2010) J Alloy Compound 500:34–38CrossRefGoogle Scholar
  26. 26.
    Caiulo N, Yu CH, Yu KMK, Lo CCH, Oduro W, Thiebaut B, Bishop P, Tsang SC (2007) Adv Funct Mater 17:1392–1396CrossRefGoogle Scholar
  27. 27.
    Seo WS, Kim SM, Kim YM, Sun XM, Dai HJ (2008) Small 11:1968–1971CrossRefGoogle Scholar
  28. 28.
    Chen M, Liu JP, Sun SH (2004) J Am Chem Soc 126:8394–8395CrossRefGoogle Scholar
  29. 29.
    Delattre A, Pouget S, Jacquot JF, Samson Y, Reiss P (2010) Small 6:932–936CrossRefGoogle Scholar
  30. 30.
    Yang Y, Nogami M, Shi JL, Chen HR, Ma GH, Tang SH (2006) Appl Phys Lett 88:081110CrossRefGoogle Scholar
  31. 31.
    Bao NZ, Shen LM, An W, Padhan P, Turner CH, Gupta A (2009) Chem Mater 21:3458–3468CrossRefGoogle Scholar
  32. 32.
    Margeat O, Ciuculescu D, Lecante P, Respaud M, Amiens C, Chaudret B (2007) Small 3:451–458CrossRefGoogle Scholar
  33. 33.
    Lu HM, Zheng WT, Jiang Q (2007) J Phys D Appl Phys 40:320–325CrossRefGoogle Scholar
  34. 34.
    Lu HM, Li PY, Huang YN, Meng XK, Zhang XY, Liu Q (2009) J Appl Phys 105:023516CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.National Special Superfine Powder Engineering Research Center of ChinaNanjing University of Science and TechnologyNanjingChina

Personalised recommendations