Journal of Sol-Gel Science and Technology

, Volume 64, Issue 2, pp 465–479 | Cite as

Thickness effects in naturally superhydrophilic TiO2–SiO2 nanocomposite films deposited via a multilayer sol–gel route

  • C. Holtzinger
  • L. Rapenne
  • P. Chaudouët
  • G. Berthomé
  • M. Langlet


TiO2–SiO2 nanocomposite films of various thicknesses have been deposited via a multilayer sol–gel route. These films exhibit a natural and persistent superhydrophilicity, which allows considering new applications for easy to clean surfaces. Atomic force microscopy, scanning and transmission electron microscopy, as well as ellipsometry and UV/visible spectrometry measurements, were performed to study how the multilayer procedure influenced the morphology and composition of composite films in relation to their thickness. The natural and photo-induced wettability of these films was studied and discussed in relation to morphology, composition, and thickness features. It is concluded that, while such features did not significantly influence the natural wettability of nanocomposite films, their photo-induced wettability was considerably enhanced when increasing their thickness, which favored a faster superhydrophilicity photo-regeneration when this natural property started to disappear after a long aging period in ambient atmosphere.


Superhydrophilicity TiO2–SiO2 composites Sol–gel coatings Surfaces Enhanced cleanability 


  1. 1.
    Permpoon S, Berthomé G, Baroux B, Joud JC, Langlet M (2006) Natural superhydrophilicity of sol–gel derived SiO2–TiO2 composite films. J Mater Sci 41:7650–7662CrossRefGoogle Scholar
  2. 2.
    Houmard M, Riassetto D, Roussel F, Bourgeois A, Berthomé G, Joud JC, Langlet M (2007) Morphology and natural wettability properties of sol-gel derived TiO2–SiO2 composite thin films. Appl Surf Sci 254:1405–1414CrossRefGoogle Scholar
  3. 3.
    Houmard M, Riassetto D, Roussel F, Bourgeois A, Berthomé G, Joud JC, Langlet M (2008) Enhanced persistence of natural super-hydrophilicity in TiO2–SiO2 composite thin films deposited via a sol-gel route. Surf Sci 602:3364–3374CrossRefGoogle Scholar
  4. 4.
    Houmard M, Berthome G, Joud JC, Langlet M (2011) Enhanced cleanability of super-hydrophilic TiO2–SiO2 composite surfaces prepared via a sol-gel route. Surf Sci 605:456–462CrossRefGoogle Scholar
  5. 5.
    Holtzinger C, Rapenne L, Chaudouët P, Berthomé G, Joud JC, Langlet M (2012) Influence of sol composition on natural superhydrophilicity of sol-gel derived TiO2–SiO2 nanocomposite thin films. Emerg Mater Res 1:127–135CrossRefGoogle Scholar
  6. 6.
    Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177CrossRefGoogle Scholar
  7. 7.
    Ingemar Odenbrand CU, Lars S, Andersson T, Andersson LAH, Brandin JGM, Busca G (1990) Characterization of silica-titania mixed oxides. J Catal 125:541–553CrossRefGoogle Scholar
  8. 8.
    Wang R, Sakai N, Fujishima A, Watanabe T, Hashimoto K (1999) Studies of surface wettability conversion on TiO2 single-crystal surfaces. J Phys Chem B 103:2188–2194CrossRefGoogle Scholar
  9. 9.
    Sakai N, Fujishima A, Watanabe T, Hashimoto K (2001) Enhancement of the photoinduced hydrophilic conversion rate of TiO2 film electrode surfaces by anodic polarization. J Phys Chem B 105:3023–3026CrossRefGoogle Scholar
  10. 10.
    Itoh M, Hattori H, Tanabe K (1974) The acidic properties of TiO2–SiO2 and its catalytic activities for the amination of phenol, the hydration of ethylene and the isomerization of butene. J Catal 35:225–231CrossRefGoogle Scholar
  11. 11.
    Tanabe K, Sumiyoshi T, Shibata K, Kiyoura T, Kitagawa J (1974) A new hypothesis regarding the surface acidity of binary metal oxides. Bull Chem Soc Jap 47:1064–1066CrossRefGoogle Scholar
  12. 12.
    Kataoka T, Dumesic JA (1988) Acidity of unsupported and silica-supported vanadia, molybdena, and titania as studied by pyridine adsorption. J Catal 112:66–79CrossRefGoogle Scholar
  13. 13.
    Sohn JR, Jang HJ (1991) Correlation between the infrared band frequency of the silanol bending vibration in TiO2–SiO2 catalysts and activity for acid catalysis. J Catal 132:563–565CrossRefGoogle Scholar
  14. 14.
    Liu ZF, Tabora J, Davis RJ (1994) Relationships between microstructure and surface acidity of Ti–Si mixed oxide catalysts. J Catal 149:117–126CrossRefGoogle Scholar
  15. 15.
    Gao X, Wachs IE (1999) Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties. Catal Today 51:233–254CrossRefGoogle Scholar
  16. 16.
    Contescu CI, Schwarz JA (2000) Acid-Base interactions on surfaces of wet and dry inorganic oxides. In: Mittal KL (ed) Acid-Base interactions : relevance to adhesion Sience and technology, vol 2. VSP BV, Zeist, pp 245–274Google Scholar
  17. 17.
    De Gennes PG, Brochard-Wyart F, Quéré D (2002) Gouttes, bulles, perles et ondes. Belin, ParisGoogle Scholar
  18. 18.
    Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994CrossRefGoogle Scholar
  19. 19.
    Bico J et al (2001) Rough wetting. EPL (Europhysics Letters) 55:214CrossRefGoogle Scholar
  20. 20.
    Langlet M, Burgos M, Coutier C, Jimenez C, Morant C, Manso M (2001) Low temperature preparation of high refractive index and mechanically resistant sol-gel TiO2 films for multilayer antireflective coating applications. J Sol Gel Sci Technol 22:139–150CrossRefGoogle Scholar
  21. 21.
    Langlet M, Kim A, Audier M, Guillard C, Herrmann JM (2003) Liquid phase processing and thin film deposition of titania nanocrystallites for photocatalytic applications on thermally sensitive substrates. J Mater Sci 38:3945–3953CrossRefGoogle Scholar
  22. 22.
    Weast RC, Shelby SM (1967) Handbook of chemistry and physics, 48th edn. The Chemical Rubber Co., CleavelandGoogle Scholar
  23. 23.
    Langlet M, Permpoon S, Riassetto D, Berthomé G, Pernot E, Joud JC (2006) Photocatalytic activity and photo-induced superhydrophilicity of sol-gel derived TiO2 films. J Photochem Photobiol A Chem 181:203–214CrossRefGoogle Scholar
  24. 24.
    Busscher HJ, van Pelt AWJ, de Boer P, de Jong HP, Arends J (1984) The effect of surface roughening of polymers on measured contact angles of liquids. Colloids Surf 9:319–331CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • C. Holtzinger
    • 1
    • 2
  • L. Rapenne
    • 1
  • P. Chaudouët
    • 1
  • G. Berthomé
    • 2
  • M. Langlet
    • 1
  1. 1.LMGP (Grenoble Institute of Technology)Grenoble Cedex 1France
  2. 2.SIMaP (Grenoble Institute of Technology)Saint Martin d’HèresFrance

Personalised recommendations