Skip to main content
Log in

Synthesis and characterisation of functionalized borosilicate nanoparticles for boron neutron capture therapy applications

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Boron Neutron Capture Therapy (BNCT) is a promising therapy for the cure of diffuse tumors. The successful clinical application of BNCT requires finding new boron-based compounds suitable for an efficient 10B delivery to the cancerous tissues. The purpose of this work is to synthesize borosilicate nanoparticles by a sol–gel recipe, and to functionalize them with folic acid in order to promote their capture by the tumor cells. Whereas sol–gel is a promising technique for the synthesis of nanoparticles, in case of borosilicate systems this approach is affected by significant boron loss during preparation. Here we show that functionalization of borosilicate nanoparticles with folic acid can reduce the boron loss. Moreover, preliminary biocompatibility tests indicate that functionalization strongly changes the reactivity of NPs towards blood cells, so favouring the potential use of these materials for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Soloway AH, Tjarks W, Barnum BA, Rong FG, Barth RF, Codogni IM, Wilson JG (1998) Chem Rev 98:1515–1562

    Article  CAS  Google Scholar 

  2. Tiwari SB, Amiji MM (2006) Curr Drug Deliv 3:219–232

    Article  CAS  Google Scholar 

  3. Goldberg M, Langer R, Jia X (2007) J Biomater Sci Polym 18:241–268

    Article  CAS  Google Scholar 

  4. Low PS, Kularatne SA (2009) Curr Opin Chem Biol 13:256–262

    Article  CAS  Google Scholar 

  5. Yang X, Grailer JJ, Pilla S, Steeber DA, Gong S (2010) Bioconjugate Chem 21:496–504

    Article  CAS  Google Scholar 

  6. Ciofani G, Raffa V, Menciassi A, Cuschieri A (2009) Nanoscale Res Lett 4:113–121

    Article  CAS  Google Scholar 

  7. Yao A, Wang D, Fu Q, Huang W, Rahaman MN (2007) Chin Sci Bull 52(2):272–276

    Article  CAS  Google Scholar 

  8. Nogami M, Moriya Y (1982) J Non-Cryst Solids 48:359–366

    Article  CAS  Google Scholar 

  9. Irwin AD, Holmgreen JS, Zerda TW, Jonas J (1987) J Non-Cryst Solids 89:191–205

    Article  CAS  Google Scholar 

  10. Irwin AD, Holmgreen JS, Jonas J (1988) J Non-Cryst Solids 101:249–254

    Article  CAS  Google Scholar 

  11. Li B, Yue Z, Zhou J, Gui Z, Li L (2002) Mater Lett 54:25–29

    Article  CAS  Google Scholar 

  12. Soraru GD, Dallabona N, Gervais C, Babonneau F (1999) Chem Mater 11:910–919

    Article  CAS  Google Scholar 

  13. Soraru GD, Babonneau F, Gervais C, Dallabona N (2000) J Sol–Gel Sci Technol 18:11–19

    Article  CAS  Google Scholar 

  14. Parashar VK, Orhan JB, Sayah A, Cantoni M, Gijs MAM (2008) Nat Nanotechnol 3:589–594

    Article  CAS  Google Scholar 

  15. Grandi S, Tomasi C, Cassinelli V, Cucca L, Profumo A, Mustarelli P, Balduini C (2012) SiO2-B2O3 xerogels: the problem of boron leaching. J Non Cryst Solids 358(14):1631–1637

    Article  CAS  Google Scholar 

  16. Nel A, Xia T, Mädler L, Li N (2006) Science 311:622–627

    Article  CAS  Google Scholar 

  17. Oberdörster G (2010) J Intern Med 267:89–105

    Article  Google Scholar 

  18. Bartneck M, Keul HA, Singh S, Czaja K, Bornemann J, Bockstaller M, Moeller M, Zwadlo-Klarwasser G, Groll J (2010) ACS Nano 4:3073–3086

    Article  CAS  Google Scholar 

  19. Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T, Radomski MW (2005) Br J Pharmacol 146:882–893

    Article  CAS  Google Scholar 

  20. Guidetti GF, Consonni A, Cipolla L, Mustarelli P, Balduini C, Torti M (2012) Nanomedicine. doi:10.1016/j.nano.2012.04.001

  21. Melloni E, Pontremoli S, Michetti M, Sacco O, Sparatore B, Salamino F, Horecker BL (1985) Proc Natl Acad Sci USA 82:6435–6439

    Article  CAS  Google Scholar 

  22. He YY, Wang XC, Jin PK, Zhao B, Fan X (2009) Spectrochimica Acta Part A 72:876–879

    Article  CAS  Google Scholar 

  23. Yang SJ, Lin FH, Tsai FC, Wei MF, Tsai HM, Wong JM, Shieh MJ (2010) Bioconjugate Chem 21:679–989

    Article  CAS  Google Scholar 

  24. Vora A, Riga A, Dollimore D, Alexander KS (2002) Thermochimica Acta 392–393:209–220

    Article  Google Scholar 

  25. Gawaz M, Langer H, May AE (2005) J Clin Invest 115:3378–3384

    Article  CAS  Google Scholar 

  26. Malech HL, Gallin JI (1987) N Engl J Med 317:687–694

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding by Cariplo (project 2009-2440: Development and safety assessment of nanostructured compounds applicable to boron neutron capture therapy) by Regione Lombardia (SAL-45) and by Almamater Foundation (Pavia) is gratefully acknowledged.

We thank dr. Sushilkumar Jadhav for preliminary experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Grandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandi, S., Spinella, A., Tomasi, C. et al. Synthesis and characterisation of functionalized borosilicate nanoparticles for boron neutron capture therapy applications. J Sol-Gel Sci Technol 64, 358–366 (2012). https://doi.org/10.1007/s10971-012-2865-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2865-9

Keywords

Navigation