Skip to main content

Nucleation and fractal growth of zirconium oxo-alkoxy nanoparticles at the induction stage of sol–gel process

Abstract

Monodispersed zirconium oxo-alkoxy nanoparticles are synthesized via a sol–gel method in a rapid micromixing reactor with in situ particle size measurements. The nucleated nanoparticles of 4.7 nm diameter are free from impurities and conserve high chemical activity. They can be associated in 1D fractals. These nanoparticles can form high optical-quality coatings on hydrophilic substrates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, New-York

    Google Scholar 

  2. 2.

    Pierre AC (1998) Introduction to sol–gel processing. Kluwer, Boston

    Book  Google Scholar 

  3. 3.

    Rozes L, Steunou N, Fornasieri G, Sanchez C (2006) Titanium-oxo clusters, versatile nanobuilding blocks for the design of advanced hybrid materials. Monatsh Chem 137:501–528

    Article  CAS  Google Scholar 

  4. 4.

    Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid-State Chem 18:259–341

    Article  CAS  Google Scholar 

  5. 5.

    Soloviev A, Tufeu R, Sanchez C, Kanaev A (2001) Nucleaton stage in the Ti(Opri)4 sol–gel process. J Phys Chem B 105:4175–4180

    Article  CAS  Google Scholar 

  6. 6.

    Azouani R, Soloviev A, Benmami M, Chhor K, Bocquet JF, Kanaev A (2007) Stability and growth of titanium-oxo-alcoxy TixOy(OiPr)z clusters. J Phys Chem C 111:16243–16248

    Article  CAS  Google Scholar 

  7. 7.

    Azouani R, Michau A, Hassouni K, Chhor K, Bocquet JF, Vignes JL, Kanaev A (2010) Elaboration of pure and doped TiO2 nanoparticles in sol–gel reactor with turbulent micromixing: application to nanocoatings and photocatalysis. Chem Eng Res Des 88:1123–1130

    Article  CAS  Google Scholar 

  8. 8.

    Azouani R, Tieng S, Chhor K, Bocquet JF, Eloy P, Gaigneaux EM, Klementiev K, Kanaev AV (2010) TiO2 doping by hydroxyurea at the nucleation stage: towards new photocatalyst in the visible spectral range. Phys Chem Chem Phys 12:11325–11334

    Article  CAS  Google Scholar 

  9. 9.

    Tieng S, Azouani R, Chhor K, Kanaev A (2011) Nucleation-growth of TiO2 nanoparticles doped by acetylacetonate. J Phys Chem C 115:5244–5250

    Article  CAS  Google Scholar 

  10. 10.

    Gorbovyi P, Uklein A, Tieng S, Traore M, Chhor K, Museur L, Kanaev A (2011) Novel nanostructured pHEMA-(oxo)TiO2 hybrid materials with efficient light-induced charge separation. Nanoscale 3:1807–1812

    Article  CAS  Google Scholar 

  11. 11.

    Bouslama M, Amamra MC, Tieng S, Brinza O, Chhor K, Abderrabba M, Vignes JL, Kanaev A (2011) Isolation of titania nanoparticles in monolithic ultraporous alumina: effect of nanoparticle aggregation on anatase phase stability and photocatalytic activity. J Appl Catal A 402:156–161

    Article  CAS  Google Scholar 

  12. 12.

    Schaefer DW, Han CC (1985) In: Pecora R (ed) Dynamic light scattering. Plenum, New York

    Google Scholar 

  13. 13.

    Vicsek T (1989) Fractal growth phenomena. World Scientific, Singapore

    Google Scholar 

  14. 14.

    Kolb M, Botet R, Jullien R (1983) Scaling of kinetically growing clusters. Phys Rev Lett 51:1123–1126

    Article  Google Scholar 

  15. 15.

    Brown WD, Ball RC (1985) Computer simulation of chemically limited aggregation. J Phys A 18:L517–L522

    Article  CAS  Google Scholar 

  16. 16.

    Silva MC, Trolliard G, Masson O, Guinebretiere R, Dauger A, Lecomte A, Frit B (1997) Early stages of crystallization in gel derived ZrO2 precursors. J Sol–Gel Sci Technol 8:419–424

    CAS  Google Scholar 

  17. 17.

    Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20:1–25

    Article  CAS  Google Scholar 

  18. 18.

    De la Rosa-Cruz E, Diaz-Torres LA, Salas P, Castano VM, Hernandez JM (2001) Evidence of non-radiative energy transfer from the host to the active ions in monoclinic ZrO2:Sm3+. J Phys D Appl Phys 34:L83–L86

    Article  Google Scholar 

  19. 19.

    Shane M, Mecartney ML (1990) Sol–gel synthesis of zirconia barrier coatings. J Mater Sci 25:1537–1544

    Article  CAS  Google Scholar 

  20. 20.

    Yamaguchi T (1994) Zirconium in catalysis. Application of ZrO2 as a catalyst and a catalyst support. Catal Today 20:199–217

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the IFR Paris-Nord Plaine de France.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrei Kanaev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tieng, S., Brinza, O., Chhor, K. et al. Nucleation and fractal growth of zirconium oxo-alkoxy nanoparticles at the induction stage of sol–gel process. J Sol-Gel Sci Technol 64, 145–148 (2012). https://doi.org/10.1007/s10971-012-2840-5

Download citation

Keywords

  • Sol–gel process
  • Zirconium oxo-alkoxy nanoparticles
  • Nucleation-growth
  • Nanocoatings