Skip to main content
Log in

Nanocrystalline SrCexFe12−xO19 (x = 0.00, 0.02, 0.04, 0.06, 0.08) microfibers by sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The SrCexFe12−xO19 (x ≤ 0.08) ferrite microfibers were prepared via sol–gel method from starting reagents of metal nitrate salts and citric acid. The obtained microfibers were characterized by TG-DSC, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The XRD patterns show that the main phase is M-type strontium hexaferrite without other impurity phases when calcined at 750 °C for 1 h, and the Ce3+ ions doping has not resulted in crystal structural changes of the Sr ferrite magnetoplumbite type structure. The SEM and TEM images indicate that samples with different calcination temperature and various values of x possess the diameters of below 10 μm and homogeneous hexagonal plate-like morphology. The VSM results show that saturation magnetization (Ms) gradually increases with increase of calcination temperature while decreases with increase of addition of Ce3+ ions, and coercive force (Hc) reveals an increase at first and then decreases with increase of calcination temperature and Ce3+ ions content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Allwood DA, Xiong G, Cooke MD et al (2002) Submicrometer ferromagnetic not gate and shift register. Science 296:2003–2006

    Article  CAS  Google Scholar 

  2. Redl FX, Cho KS, Murray CB et al (2003) Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423:968–971

    Article  CAS  Google Scholar 

  3. Mallet J, Zhang KY, Chien CL et al (2004) Fabrication and magnetic properties of fcc CoXPt1−X nanowires. Appl Phys Lett 84:3900–3903

    Article  CAS  Google Scholar 

  4. Tanase M, Bauer LA, Hultgren A et al (2001) Magnetic alignment of fluorescent nanowires. Nanoletters 1:155–158

    Article  CAS  Google Scholar 

  5. Zlatkov BS, Nikolic MV, Aleksic O et al (2009) A study of magneto-crystalline alignment in sintered barium hexaferrite fabricated by powder injection molding. J Magn Magn Mater 321:330–335

    Article  CAS  Google Scholar 

  6. Shen XQ, Liu MQ, Song FZ et al (2011) Effects of La-Zn substitution on microstructures and magnetic properites of strontium ferrite nanofibers. Appl Phys A Mater Sci Proc 104:109–116

    Article  CAS  Google Scholar 

  7. Ateia E, Ahmed MA, El-Aziz AK (2007) Effect of rare earth radius and concentration on the structural and transport properties of doped Mn-Zn ferrite. J Magn Magn Mater 311:545–554

    Article  CAS  Google Scholar 

  8. El-Sayed MM (2007) Rare-earth substitution effect on the quality of Mg-Ti ferrite. Ceram Int 33:413–418

    Article  CAS  Google Scholar 

  9. Kum JS, Kim SJ, Shim IB et al (2004) Magnetic properties of Ce-substituted yttrium iron garnet ferrite powders fabricated using a sol-gel method. J Magn Magn Mater 272–276:2227–2229

    Article  Google Scholar 

  10. Verma V, Kotnala RK, Pandey V et al (2008) The effect on dielectric losses in lithium ferrite by cerium substitution. J Alloys Compd 466:404–407

    Article  CAS  Google Scholar 

  11. Sun C, Sun KN (2007) Preparation and microwave absorption properties of Ce-substituted lithium ferrite. Solid State Commun 141:258–261

    Article  CAS  Google Scholar 

  12. Lange H, Sioda M, Huczko A et al (2003) Nanocarbon production by arc discharge in water. Carbon 41(8):1617–1623

    Article  CAS  Google Scholar 

  13. Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211

    Article  CAS  Google Scholar 

  14. Yin LW, Bando Y, Zhu YC et al (2005) Single-crystalline AlN nanotubes with carbon-layer coatings on the outer and inner surfaces via a multiwalled-carbon-nanotube-template-induced route. Adv Mater 17(2):213–217

    Article  CAS  Google Scholar 

  15. Wang WZ, Liu YK, Xu CK et al (2002) Synthesis of nionanorods by a novel simple precursorthermal decomposition approach. Chem Phys Lett 362(1–2):119–122

    Article  CAS  Google Scholar 

  16. Ju YW, Park JH, Jung HR et al (2008) Electrospun MnFe2O4nanofibers: preparation and morphology. Compos Sci Technol 68(7–8):1704–1709

    Article  CAS  Google Scholar 

  17. Li D, McCann JT, Xia YN et al (2006) Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Chem Soc 89(6):1861–1869

    CAS  Google Scholar 

  18. Chandradass J, Balasubramanian M (2006) Sol-gel processing of alumina fibres. J Mater Process Tech 173:275–280

    Article  CAS  Google Scholar 

  19. Sakka S (1987) Sol-gel glasses and their application. Trans Indian Ceram Soc 46:1–11

    CAS  Google Scholar 

  20. Venkatesh R, Ramanan SR (2002) Influence of processing variables on the microstructure of sol-gel spun alumina fibre. Mater Lett 55:189–195

    Article  CAS  Google Scholar 

  21. Song FZ, Shen XQ, Xiang J et al (2010) Characterization and magnetic properties of BaxSr1-xFe12O19 (x = 0–1) ferrite hollow fibers via gel-precursor transformation process. J Alloys Compd 50:297–301

    Article  Google Scholar 

  22. Song FZ, Shen XQ, Liu MQ et al (2012) Formation and characterization of magnetic barium ferrite hollow fibers with high specific surface area via sol-gel process. Solid State Sci 12:1603–1607

    Article  Google Scholar 

  23. Zhang HJ, Jia XL, Yan YJ et al (2004) The effect of the concentration of citric acid and pH values on the preparation of MgAl2O4 ultrafine powder by citrate sol-gel process. Mater Res Bull 39:839–850

    Article  CAS  Google Scholar 

  24. Song Q, Zhang ZJ (2004) Shape control and associated magnetic porperties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126:6164–6168

    Article  CAS  Google Scholar 

  25. Fang HC, Ong CK, Zhang XY et al (1999) Low temperature characterization of nano-sized BaFe12-2xZnxSnxO19 particle. J Magn Magn Mater 191:277–281

    Article  CAS  Google Scholar 

  26. Shen XQ, Liu MQ, Song FZ et al (2010) Structural evolution and magnetic properties of SrFe12O19 nanofibers by electrospinning. J Sol-Gel Sci Technol 53:448–453

    Article  CAS  Google Scholar 

  27. Sürig C, Hempel KA, Bonnenberg D (1993) Formation and mi-crowave absorption of barium and strontium ferrite prepared by sol-gel technique. Appl Phys Lett 63:2836–2838

    Article  Google Scholar 

  28. Stoner EC, Wohlfarth EP (1991) A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans Magn 27:599–642

    Article  Google Scholar 

  29. Ravinder D, Kumar BR (2003) Electrical conductivity of cerium substituted by Mn-Zn ferrite. Mater Lett 57:1738–1742

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported China Postdoctoral Science Foundation (Grant No. 20080431069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianfeng Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, X., Gao, J. & Lu, Y. Nanocrystalline SrCexFe12−xO19 (x = 0.00, 0.02, 0.04, 0.06, 0.08) microfibers by sol–gel method. J Sol-Gel Sci Technol 64, 86–92 (2012). https://doi.org/10.1007/s10971-012-2830-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2830-7

Keywords

Navigation