Skip to main content
Log in

Green upconversion emission dependence on size and surface residual contaminants in nanocrystalline ZrO2:Er3+

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The luminescence lifetime of the green upconversion emission Er3+ ions in ZrO2 nanocrystals was found to be sensitive to the particle size and crystalline phase, as well as to the residual surface contaminants. Erbium doped (0.2 mol% Er2O3) ZrO2 nanocrystals ranging from 54 to 120 nm in size were prepared by a sol–gel process with the presence of nonionic PLURONIC P127 surfactant, and the upconversion emission was characterized. PLURONIC P127 at a molar ratio of 0.0082 promoted both an enhancement in the green upconversion emission as well as a strong reduction of surface contaminants such as CO, CH2, and OH. A fluorescence decay analysis via a simple microscopic rate equation model suggests that crystallite size and nonradiative relaxation mechanisms to different surface contaminants have to be taken into account to explain the observed green luminescence quenching. XRD, FTIR and luminescence lifetime measurements allow the quantification of the nonradiative processes that lead to the green luminescence quenching; and prove the relevance of using nonionic surfactants in the synthesis to reduce residual surface contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu X, Dong G, Qiao Y, Qiu J (2008) Appl Opt 47(34):6416–6421

    Article  Google Scholar 

  2. Wang G, Peng G, Li P (2011) Acc Chem Res 44(5):322–332

    Article  Google Scholar 

  3. Lüer L, Manzoni C, Egelhaaf HJ, Cerullo G, Oelkrug D, Lanzani G (2006) Physical Review B 73(3):035216

    Article  Google Scholar 

  4. Ghosh P, Patra A (2005) Pramana – J Phys 65(5):901–907

    Article  CAS  Google Scholar 

  5. Shaw PE, Ruseckas A, Samuel IDW (2008) Physical Review B 78(24):245201

    Article  Google Scholar 

  6. Kim D, Okahara S, Nakayama M, Shim Y (2008) Physical Review B 78(15):153301

    Article  Google Scholar 

  7. Gamelin DR, Gamelin DR (2001) Top Curr Chem 214:5–23

    Google Scholar 

  8. Zhu Q, Li J-G, Li X, Sun X (2009) Acta Mater 57(20):5975–5985

    Article  CAS  Google Scholar 

  9. Chen G, Somesfalean G, Liu Y, Zhang Z, Sun Q, Wang F (2007) Physical Review B 75(19):195204

    Article  Google Scholar 

  10. Lopez-Luke T, De la Rosa E, Salas P, Angeles-Chavez C, Diaz-Torres LA, Bribiesca S (2007) J Phys Chem C 111(45):17110–17117

    Article  CAS  Google Scholar 

  11. Angeles-Chavez C, Salas P, Lopez-Luke T, de la Rosa E (2010) Vacuum 84:1226–1231

    Article  CAS  Google Scholar 

  12. Solis D, Lopez-Luke T, De la Rosa E, Salas P, Angeles-Chavez C (2009) J Lumin 129:449–455

    Article  CAS  Google Scholar 

  13. Salas P, Nava N, Ángeles-Chavez C, De la Rosa E, Díaz-Torres LA (2008) J Nanosci Nanotechnol 8:6431–6436

    CAS  Google Scholar 

  14. Meza O, Diaz-Torres LA, Salas P, Rosa EDl, Angeles-Chavez C, Solis D (2009) Journal of Nano Research 5:121–134

    Article  CAS  Google Scholar 

  15. Garvie RC, Nicholson PS, Am J (1972) Ceram Soc 55(6):303–305

    Article  CAS  Google Scholar 

  16. Hong SJ, Han JI (2007) J Electroceram 18:67–71

    Article  CAS  Google Scholar 

  17. De G, Qin W, Zhang J, Zhang J, Wang Y, Cao C, Cui Y (2006) Solid State Commun 137(9):483–487

    Article  CAS  Google Scholar 

  18. Nakamura T, Ogawa T, Adachi S, Fujii M (2009) Physical Review B 79(7):075309

    Article  Google Scholar 

  19. de Sousa DF, Nunes LAO (2002) Physical Review B 66(2):024207

    Article  Google Scholar 

  20. Caldiño U, Jaque D, Martín-Rodríguez E, Ramírez MO, García Solé J, Speghini A, Bettinelli M (2008) Physical Review B 77(7):075121

    Article  Google Scholar 

  21. Gómez LA, Maciel GS, Araújo CBd, Patra A (2008) J Appl Phys 103(5):053507

    Article  Google Scholar 

  22. Wolber PK, Hudson BS (1979) Biophys J 28(2):197–210

    Article  CAS  Google Scholar 

  23. Rai S, Hazarika S (2008) Opt Mater 30(9):1343–1348

    Article  CAS  Google Scholar 

  24. Lewis RM, Torczon V (2002) SIAM J Optim 12(4):1075–1089

    Article  Google Scholar 

  25. Audet C, Dennis JJE (2002) SIAM J Optim 13(3):889–903

    Article  Google Scholar 

  26. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Berlin, pp 13–14

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Diaz-Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz-Torres, L.A., Salas, P., Angeles-Chavez, C. et al. Green upconversion emission dependence on size and surface residual contaminants in nanocrystalline ZrO2:Er3+ . J Sol-Gel Sci Technol 63, 473–480 (2012). https://doi.org/10.1007/s10971-012-2809-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2809-4

Keywords

Navigation