Skip to main content
Log in

Synthesis and characterization of TiO2/Rh3+ nanoparticulate sols, xerogels and cryogels for photocatalytic applications

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanoparticulate TiO2/Rh3+ sols have been synthesized by the colloidal sol–gel route. The combination of the data measured with optical techniques such as laser diffraction, dynamic light scattering and multiple light scattering with a near-infrared light allows us to follow up the evolution of the peptization process and to establish the effect of the presence of Rh3+ on it. It is observed that the presence of rhodium ions retards the peptization step (t2) and decreases both the average particle size of the nanoparticles and the viscosity of the nanoparticulate sols. In addition, when Rh3+ is present the isoelectric point shifts up to higher pH, which suggests that chemical adsorption of the rhodium (III) cations onto the surface of the TiO2 nanoparticles is produced. The xerogels and cryogels obtained from the sols are constituted by anatase as major phase and traces of brookite. The phase transition is observed at lower temperatures for the xerogels containing rhodium (III) and at higher temperatures in the case of the cryogels. Finally, photocatalytic activity is higher in the case of the TiO2/Rh3+ sols due to the rhodium (III) effect on the electronic transitions from the valence band to the conduction band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen X, Mao SS (2007) Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  2. Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  3. Barbé CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Grätzel M (1997) J Am Ceram Soc 80:3157–3171

    Article  Google Scholar 

  4. Colomer MT (2006) Adv Mater 18:371–374

    Article  CAS  Google Scholar 

  5. Hubert C, Denicourt-Nowicki A, Beaunier P, Roucoux A (2010) Green Chem 12:1167–1170

    Article  CAS  Google Scholar 

  6. Raskó J, Solymosi F (1994) J Phys Chem 98:7147–7152

    Article  Google Scholar 

  7. Castillo S, Morán-Pineda M, Molina V, Gómez R, López T (1998) Appl Catal B-Environ 15:203–209

    Article  CAS  Google Scholar 

  8. Castañeda L, Maldonado A, Olvera ML (2008) Sensor Actuat B-Chem 133:687–693

    Article  Google Scholar 

  9. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) Renew Sust Energ Rev 11:401–425

    Article  CAS  Google Scholar 

  10. Bi ZC, Tien HT (1984) Int J Hydrogen Energy 9:717–722

    Article  CAS  Google Scholar 

  11. Doong RA, Chen CH, Maithreepala RA, Chang SM (2001) Water Res 35:2873–2880

    Article  CAS  Google Scholar 

  12. Kang MG, Han HE, Kim KJ (1999) J Photochem Photobiol A Chem 125:119–125

    Article  CAS  Google Scholar 

  13. Takeuchi M, Yamashita H, Matsuoka M, Anpo M, Hirao T, Itoh N, Iwamoto N (2000) Catal Lett 67:135–137

    Article  CAS  Google Scholar 

  14. Singh AK, Pande NK, Bell AT (1985) J Catal 94:422–435

    Article  CAS  Google Scholar 

  15. López T, Mendez-Vivar J, Juarez R (1992) J Non Cryst Solids 147–148:778–782

    Article  Google Scholar 

  16. Ohyama J, Teramura K, Okuoka S, Yamazoe S, Kato K, Shishido T, Tanaka T (2010) Langmuir 26:13907–13912

    Article  CAS  Google Scholar 

  17. Colomer MT, Guzmán J, Moreno R (2010) J Am Ceram Soc 93:59–64

    Article  CAS  Google Scholar 

  18. Colomer MT, Guzmán J, Moreno R (2008) Chem Mater 20:4161–4165

    Article  CAS  Google Scholar 

  19. Patterson AL (1939) Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  20. Bischoff BL, Anderson MA (1995) Chem Mater 7:1772–1778

    Article  CAS  Google Scholar 

  21. Fazio S, Guzmán J, Colomer MT, Salomoni A, Moreno R (2008) J Eur Ceram Soc 28:2171–2176

    Article  CAS  Google Scholar 

  22. Kosmulski M (2011) J Colloid Interface Sci 353:1–15

    Article  CAS  Google Scholar 

  23. Zhang H, Banfield JF (1998) J Mater Chem 8:2073–2076

    Article  CAS  Google Scholar 

  24. Enache CS, Schoonman J, van de Krol R (2006) Appl Surf Sci 252:6342–6347

    Article  CAS  Google Scholar 

  25. Reidy DJ, Holmes JD, Morris MA (2006) J Eur Ceram Soc 26:1527–1534

    Article  CAS  Google Scholar 

  26. Zheng R, Guo Y, Jin C, Xie J, Zhu Y, Xie Y (2010) J Molec Catal A Chem 319:46–51

    Article  CAS  Google Scholar 

  27. Cai-mei F, Qi T, Yun-fang W, Xiao-gang H, Zhen-hai L, Yan-ping S (2007) Trans Nonferrous Met Soc China 17:s716–s720

    Google Scholar 

  28. Mst Nahar, Zhang J, Hasegawa K, Kagaya S, Kuroda S (2009) Mater Sci Semicond Process 12:168–174

    Article  Google Scholar 

  29. Colomer MT, Velasco MJ, Jurado JR (2006) J Sol–Gel Sci Techn 39:211–222

    Article  CAS  Google Scholar 

  30. Roy B, Fuierer PA (2010) J Am Ceram Soc 93:436–444

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Ministry of Science and Innovation (MAT2009-14369-C02-01) and the Interuniversity Attraction Poles Program (P6/17)-Belgian State-Belgian Science Policy. M. Borlaf thanks CSIC for the concession of an I3P grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Colomer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borlaf, M., Poveda, J.M., Moreno, R. et al. Synthesis and characterization of TiO2/Rh3+ nanoparticulate sols, xerogels and cryogels for photocatalytic applications. J Sol-Gel Sci Technol 63, 408–415 (2012). https://doi.org/10.1007/s10971-012-2802-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2802-y

Keywords

Navigation