Skip to main content

A novel synthesis and optical properties of cuprous oxide nano octahedrons via microwave hydrothermal route

Abstract

A novel and efficient synthesis of cuprous oxide (Cu2O) nano-octahedron was successfully prepared via a green chemie douce approach utilized a microwave hydrothermal route at low growth temperature without the presence of any surfactant. The crystalline structure of the Cu2O was characterized by several techniques like X-ray powder diffraction (XRD), Fourier transformation spectroscopy, field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy and transmission electron microscopy (TEM). XRD results indicate that the size of Cu2O nano—octahedron is 71 nm which is calculated with the help of Scherer equation, as supported by FESEM and TEM. The formation mechanism of the Cu2O octahedral was discussed. Optical absorption spectra reveal that the optical band gap of the Cu2O is controlled by quantum confinement effect. The obtained optical energy gap value E g of Cu2O octahedron was about 2.43 eV. The photoluminescence emission spectra of the Cu2O nano-octahedrons exhibit two emission peaks located at 342 and 365 nm due to the quantum effect. It is evaluated that the green chemie douce approach is a cheap and fast to synthesize Cu2O nano-octahedrons and could be potentially extended to other inorganic systems for industrial production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Zhu J, Wang Y, Wang X, Yang X, Lu L (2008) Powder Technol 181:249–254

    Article  CAS  Google Scholar 

  2. Zhang W, Luan C, Yang Z, Liu X, Zhang D, Yang S (2007) Appl Surf Sci 253:6063–6067

    Article  CAS  Google Scholar 

  3. Qiu H, Lu L, Huang X, Qu Y (2010) Electrochim Acta 56:291–296

    Article  CAS  Google Scholar 

  4. He P, Shen X, Gao H (2005) J Colloid Interface Sci 284:510–515

    Article  CAS  Google Scholar 

  5. Hung L-I, Tsung C-K, Huang W, Yang P (2010) Adv Mater 22:1910–1914

    Article  CAS  Google Scholar 

  6. Zhang X, Wang G, Wu H, Zhang D, Zhang X, Li P, Wu H (2008) Mater Lett 62:4363–4365

    Article  CAS  Google Scholar 

  7. Yan C, Jun WY, Gen ZK, Zhen B (2010) Trans Nonferrous Metal Soc China 20:216–220

    Article  Google Scholar 

  8. Tang X, Li J, Hao J (2008) Mater Res Bull 43:2912–2918

    Article  CAS  Google Scholar 

  9. Ji X, Huang X, Liu J, Jiang J, Li X, Ding R, Hu Y, Wu F, Li Q (2010) J Alloys Compd 503:L21–L25

    Article  CAS  Google Scholar 

  10. Wang D, Zhou Y, Song C, Shao M (2009) J Crystal Growth 311:3948–3953

    Article  CAS  Google Scholar 

  11. Kuo C-H, Huang MH (2010) Nano Today 5:106–116

    Article  CAS  Google Scholar 

  12. Zhu Q, Zhang Y, Wang J, Zhou F, Chu PK (2011) J Mater Sci Technol 27:289–295

    Article  CAS  Google Scholar 

  13. Lu C, Qi L, Yang J, Wang X, Zhang D, Xie J, Ma J (2005) Adv Mater 17:2562–2567

    Article  CAS  Google Scholar 

  14. Ahmed A, Gajbhiye NS, Joshi AG (2011) J Solid State Chem 184:2209–2214

    Article  CAS  Google Scholar 

  15. Jolivet J-P, Cassaignon S, Chanéac C, Chiche D, Durupthy O, Portehault D, Rendus C (2010) Chimie 13:40–51

    Article  CAS  Google Scholar 

  16. Shim W, Noh W-T, Kwon J, Cho JY, Kim K-S, Kang DH (2002) Bull Korean Chem Soc 23:563–566

    Article  CAS  Google Scholar 

  17. Topnani N, Kushwaha S, Athar T (2009) Mater Sci Eng 1:M67–M73

    Google Scholar 

  18. Zhang X, Xie Y, Xu F, Liu X, Xu D (2003) Inorg Chem Commun 6:1390–1392

    Article  CAS  Google Scholar 

  19. Zhang HG, Zhu Q, Wang Y, Zhang CY, Tao L (2007) Mater Lett 61:4508–4511

    Article  CAS  Google Scholar 

  20. Zhang X, Wang G, Gu A, Wu H, Fang B (2008) Solid State Commun 148:525–528

    Article  CAS  Google Scholar 

  21. Li B, Wang X, Xia D, Chu Q, Liu X, Lu F, Zhao X (2011) J Solid State Chem 184:2097–2102

    Article  CAS  Google Scholar 

  22. Qiu H, Lua L, Huang X, Qu Y (2010) Electrochim Acta 56:291–296

    Article  CAS  Google Scholar 

  23. Yang Z, Cingarapu S, Klabunde KJ (2010) J Sol Gel Sci Technol 53:359–365

    Article  CAS  Google Scholar 

  24. Hafez M, Al-Marzouki F, Mahmoud WE (2011) Mater Lett 65:1868–1870

    Article  CAS  Google Scholar 

  25. Qiu H, Huang LLX, Qu Y (2010) Electrochim Acta 56:291–296

    Article  CAS  Google Scholar 

  26. Zhu J, Wang Y, Wang X, Yang X, Lu L (2008) Powder Technol 181:249–254

    Article  CAS  Google Scholar 

  27. Zhang W, Luan C, Yang Z, Liu X, Zhang D, Yang S (2007) Appl Surf Sci 253:6063–6067

    Article  CAS  Google Scholar 

  28. Andal V, Buvaneswari G (2011) Sens Actuators, B 155:653–658

    Article  Google Scholar 

  29. Mathew X, Mathews NR, Sebastian PJ (2001) Solar Energy Mater Solar Cells 70:277–286

    Article  CAS  Google Scholar 

  30. Gaponenko SV (1998) Optical properties of semiconductor nanocrystals. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgments

This work was produced as a result of collaboration program between, Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia and Department of Physics, Faculty of Science, Firat University, Elaziq, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Al-Ghamdi or F. Yakuphanoglu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Al-Ghamdi, A.A., Al-Hazmi, F., Al-Hartomy, O.A. et al. A novel synthesis and optical properties of cuprous oxide nano octahedrons via microwave hydrothermal route. J Sol-Gel Sci Technol 63, 187–193 (2012). https://doi.org/10.1007/s10971-012-2784-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2784-9

Keywords

  • Green chemie douce
  • Nano cuprous oxide octahedron
  • Optical properties