Skip to main content
Log in

Tunable white light-emission of a CaW1−x Mo x O4:Tm3+, Tb3+, Eu3+ phosphor prepared by a Pechini sol–gel method

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A white light-emitting CaW1−x Mo x O4:Tm3+, Tb3+, Eu3+ phosphor was prepared by a Pechini sol–gel method. The incorporation of Mo6+ into the CaWO4 host matrix can broaden its excitation range and promote tunability to its emission. When the CaW1−x Mo x O4 system is triply-doped with Tm3+, Tb3+, and Eu3+ ions, energy transfer occurs from both WO4 2− and MoO4 2− groups to Tm3+ and Tb3+ ions. A significant red-shift in the excitation of Eu3+ allows the resulting emission to be tunable between cool, natural, and warm white light by varying the excitation wavelength. The undoped and triply-doped CaW1−x Mo x O4 phosphors were characterized by X-ray diffraction, scanning electron microscopy, photoluminescence excitation and emission spectra, and CIE chromaticity (x, y) coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nakamura S, Fasol G (1997) The blue laser diode: GaN based light emitters and lasers. Springer, Berlin

  2. Ye S, Xiao F, Pan YX, Ma YY, Zhang QY (2010) Mater Sci Eng, R 71(1):1–34. doi:10.1016/j.mser.2010.07.001

    Article  Google Scholar 

  3. Chen L, Lin C–C, Yeh C-W, Liu R-S (2010) Mater 3(3):2172–2195. doi:10.3390/ma3032172

    Article  CAS  Google Scholar 

  4. Krames MR, Shchekin OB, Mueller-Mach R, Mueller GO, Ling Z, Harbers G, Craford MG (2007) J Disp Technol 3(2):160–175. doi:10.1109/JDT.2007.895339

    Article  CAS  Google Scholar 

  5. Wang B, Sun L, Ju H (2010) J Sol-Gel Sci Technol 53(2):454–458. doi:10.1007/s10971-009-2120-1

    Article  CAS  Google Scholar 

  6. Kim JS, Jeon PE, Park YH, Choi JC, Park HL, Kim GC, Kim TW (2004) Appl Phys Lett 85(17):3696–3698. doi:10.1063/1.1808501

    Article  CAS  Google Scholar 

  7. Kim JS, Lim KT, Jeong YS, Jeon PE, Choi JC, Park HL (2005) Solid State Commun 135:21–24. doi:10.1016/j.ssc.2005.03.068

    Article  CAS  Google Scholar 

  8. Wenbo M, Shi Z, Wang R (2010) J Alloys Compd 503(1):118–121. doi:10.1016/j.jallcom.2010.04.213

    Article  Google Scholar 

  9. Hou Z, Chai R, Zhang M, Zhang C, Chong P, Xu Z, Li G, Lin J (2009) Langmuir 25(20):12340–12348. doi:10.1021/la9016189

    Article  CAS  Google Scholar 

  10. Cavalli E, Boutinaud P, Mahiou R, Bettinelli M, Dorenbos P (2010) Inorg Chem 49(11):4916–4921. doi:10.1021/ic902445c

    Article  CAS  Google Scholar 

  11. Zalga A, Sazinas R, Garskaite E, Kareiva A, Bareika T, Tamulaitis G, Juskenas R, Ramanauskas R (2009) Chemija 20(3):169–174

    CAS  Google Scholar 

  12. Wang W, Yang P, Cheng Z, Hou Z, Li C, Lin J (2011) ACS Appl Mater Interfaces. doi:10.1021/am2008008

    Google Scholar 

  13. Lei F, Yan B (2008) J Solid State Chem 181(4):855–862. doi:10.1016/j.jssc.2008.01.033

    Article  CAS  Google Scholar 

  14. Gao D, Li Y, Lai X, Wei Y, Bi J, Li Y, Liu M (2011) Mater Chem Phys 126(1–2):391–397. doi:10.1016/j.matchemphys.2010.10.053

    Article  CAS  Google Scholar 

  15. Wang W, Yang P, Gai S, Niu N, He F, Lin J (2010) J Nanopart Res. doi:10.1007/s11051-010-9850-4

    Google Scholar 

  16. Grobelna B, Lipowska B, Klonkowski AM (2006) J Alloys Compd 419(1–2):191–196. doi:10.1016/j.jallcom.2005.07.078

    Article  CAS  Google Scholar 

  17. Zhu F, Xiao Z, Yan L, Zhang F, Huang A (2010) Appl Phys A 101(4):689–693. doi:10.1007/s00339-010-5950-3

    Google Scholar 

  18. Blasse G, Grabmarier BC (1994) Luminescent materials. Springer, Berlin, p 103

  19. Liao J, Qiu B, Wen H, Chen J, You W, Liu L (2009) J Alloys Compd 487(1–2):758–762. doi:10.1016/j.jallcom.2009.08.068

    Article  CAS  Google Scholar 

  20. Liao J, Liu L, You H, Huang H, You W (2011) Optik-Int J Light Electron Opt. doi:10.1016/j.ijleo.2011.07.002

    Google Scholar 

  21. Nazarov MV, Jeon DY, Kang JH, Popovici E-J, Muresan L-E, Zamoryanskaya MV, Tsukerblat BS (2004) Solid State Commun 131:307–311. doi:10.1016/j.ssc.2004.05.025

    Article  CAS  Google Scholar 

  22. Zhu F, Xiao Z, Zhang F, Yan L, Huang A (2011) J Lumin 131(1):22–24. doi:10.1016/j.jlumin.2010.08.019

    Article  CAS  Google Scholar 

  23. Zheng Y, Huang Y, Yang M, Guo N, Qiao H, Jia Y, You H (2012) J Lumin 132(2):362–367. doi:10.1016/j.jlumin.2011.09.010

    Article  CAS  Google Scholar 

  24. Pang ML, Lin J, Wang SB, Yu M, Zhou YH, Han XM (2003) J Phys: Condens Matter 15:5157–5169. doi:10.1088/0953-8984/15/29/327

    Article  CAS  Google Scholar 

  25. Yang P, Quan Z, Li C, Lian H, Huang S, Lin J (2008) Microporous Mesoporous Mater 116(1–3):524–531. doi:10.1016/j.micromeso.2008.05.016

    Article  CAS  Google Scholar 

  26. Li X, Yang Z, Guan L, Guo J, Wang Y, Guo Q (2009) J Alloys Compd 478(1–2):684–686. doi:10.1016/j.jallcom.2008.11.109

    Article  CAS  Google Scholar 

  27. Shi S, Gao J, Zhou J (2008) Opt Mater 30(10):1616–1620. doi:10.1016/j.optmat.2007.10.007

    Article  CAS  Google Scholar 

  28. Xie A, Yuan X, Hai S, Wang J, Wang F, Li L (2009) J Phys D Appl Phys 42(10):105107. doi:10.1088/0022-3727/42/10/105107

    Article  Google Scholar 

  29. Su Y, Li L, Li G (2008) Chem Mater 20(19):6060–6067. doi:10.1021/cm8014435

    Article  CAS  Google Scholar 

  30. Teshima K, Yubuta K, Sugiura S, Fujita Y, Suzuki T, Endo M, Shishido T, Oishi S (2006) Cryst Growth Des 6(7):1598–1601. doi:10.1021/cg050673z

    Article  CAS  Google Scholar 

  31. Tyson RM, Hemphill WR, Theisen AF (1988) Am Min 73:1145–1154

    CAS  Google Scholar 

  32. Nazarov MV, Tsukerblat BS, Popovici EJ, Jeon DY (2004) Phys Lett A 330(3–4):291–298. doi:10.1016/j.physleta.2004.07.071

    Article  CAS  Google Scholar 

  33. Jin Y, Hao Z, Zhang X, Luo Y, Wang X, Zhang J (2011) Opt Mater 33(11):1591–1594. doi:10.1016/j.optmat.2011.04.009

    Article  CAS  Google Scholar 

  34. Yu Q, Liu Y, Wu S, Lu X, Huang X, Li X (2008) J Rare Earths 26(6):783–786. doi:10.1016/S1002-0721(09)60005-3

    Article  Google Scholar 

  35. Thongtem T, Phuruangrat A, Thongtem S (2008) Appl Surf Sci 254(23):7581–7585. doi:10.1016/j.apsusc.2008.01.092

    Article  CAS  Google Scholar 

  36. Lakshminarayana G, Yang R, Qiu JR, Brik MG, Kumar GA, Kityk IV (2009) J Phys D Appl Phys 42(1):015414. doi:10.1088/0022-3727/42/1/015414

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the NASA Harriett G. Jenkins Predoctoral Fellowship and the NOAA-Education Partnership Program (Grant no. NA06OAR4810187). The authors extend thanks to Dr. Arona Diouf for initial advice in this research, Dr. Zhigang Xu and Kwadwo Mensah–Darkwa for SEM analysis, and Dr. Sergey Yarmolenko for XRD assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zerihun Assefa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mickens, M., Assefa, Z. & Kumar, D. Tunable white light-emission of a CaW1−x Mo x O4:Tm3+, Tb3+, Eu3+ phosphor prepared by a Pechini sol–gel method. J Sol-Gel Sci Technol 63, 153–161 (2012). https://doi.org/10.1007/s10971-012-2780-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2780-0

Keywords

Navigation