Transparent conducting Sn:ZnO films deposited from nanoparticles


Homogeneous transparent conducting Sn:ZnO films on fused silica substrates were prepared by dip-coating from nanoparticle dispersions, while the nanocrystalline Sn:ZnO particles with different dopant concentrations were synthesized by microwave-assisted non-aqueous sol–gel process using Sn(IV) tert-butoxide and Zn(II) acetate as precursors and benzyl alcohol as solvent. The dopant concentration had a great impact on the electrical properties of the films. A minimum resistivity of 20.3 Ω cm was obtained for a porous Sn:ZnO film with initial Sn concentration of 7.5 mol% after annealing in air and post-annealing in N2 at 600 °C. The resistivity of this porous film could further be reduced to 2.6 and 0.6 Ω cm after densified in Sn:ZnO and Al:ZnO reaction solution, respectively. The average optical transmittance of a 400-nm-thick Sn:ZnO film densified with Sn:ZnO after the two annealing steps was 91%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Shishiyanu ST, Shishiyanu TS, Lupan OI (2005) Sens Actuators B 107:379–386

    Article  Google Scholar 

  2. 2.

    Gong H, Hu JQ, Wang JH, Ong CH, Zhu FR (2006) Sens Actuators B 115:247–251

    Article  Google Scholar 

  3. 3.

    Nanto H, Sokooshi H, Kawai T (1993) Sens Actuators B 14:715–717

    Article  CAS  Google Scholar 

  4. 4.

    Iwabuchi Y, Shiino O, Yoshikawa M, Kamei M (2007) Japan Patent JP2007311041-A, 29 Nov 2007

  5. 5.

    Minami T, Miyata T, Ohtani Y (2007) Phys Status Solidi A 204:3145–3151

    Article  CAS  Google Scholar 

  6. 6.

    Choi SE, Oh YT, Ham HK, Kim TW, Heo GS, Park JW, Choi BH, Shin DC (2011) Curr Appl Phys 11:S255–S257

    Article  Google Scholar 

  7. 7.

    Nam SH, Kim MH, Yoo DG, Jeong SH, Kim DY, Lee NE, Boo JH (2010) Surf Rev Lett 17:121–127

    Article  CAS  Google Scholar 

  8. 8.

    Hong JS, Kim SM, Park SJ, Choi HW, Kim KH (2010) Mol Cryst Liq Cryst 520:295–303

    Article  CAS  Google Scholar 

  9. 9.

    Yoo DG, Nam SH, Kim MH, Jeong SH, Jee HG, Lee HJ, Lee NE, Hong BY, Kim YJ, Jung D, Boo JH (2008) Surf Coat Technol 202:5476–5479

    Article  CAS  Google Scholar 

  10. 10.

    Park SHK, Ryu M, Hwang CS, Yang S, Byun C, Lee JI, Shin J, Yoon SM, Chu HY, Cho KI, Lee K, Oh MS, Im S (2008) Sid Int Symp Dig Tec 39:629–632

    Article  CAS  Google Scholar 

  11. 11.

    Granqvist CG (2007) Sol Energy Mater Sol Cells 91:1529–1598

    Article  CAS  Google Scholar 

  12. 12.

    Kang DW, Kuk SH, Ji KS, Lee HM, Han MK (2011) Sol Energy Mater Sol Cells 95:138–141

    Article  CAS  Google Scholar 

  13. 13.

    Kim D, Kim H, Jang K, Park S, Pillai K, Yi J (2011) J Electrochem Soc 158:D191–D195

    Article  CAS  Google Scholar 

  14. 14.

    Yoshida Y, Tanaka S, Hiromitsu I, Fujita Y, Yoshino K (2008) Jpn J Appl Phys 47:867–871

    Article  CAS  Google Scholar 

  15. 15.

    Sundaramoorthy R, Repins IL, Gennett T, Pern FJ, Albin D, Li JAV, DeHart C, Glynn S, Perkins JD, Ginley DS, Gessert T (2009) IEEE Phot Spec Conf 1–3:2225–2230

    Google Scholar 

  16. 16.

    Cavani F, Trifiro F, Vaccari A (1991) Catal Today 11:173–301

    Article  CAS  Google Scholar 

  17. 17.

    Kurz A, Aegerter MA (2004) J Sol-Gel Sci Technol 31:267–271

    Article  CAS  Google Scholar 

  18. 18.

    Holmelund E, Schou J, Tougaard S, Larsen NB (2002) Appl Surf Sci 197:467–471

    Article  Google Scholar 

  19. 19.

    Kelly PJ, Zhou Y (2006) J Vac Sci Technol A 24:1782–1789

    Article  CAS  Google Scholar 

  20. 20.

    Bae SY, Na CW, Kang JH, Park J (2005) J Phys Chem B 109:2526–2531

    Article  CAS  Google Scholar 

  21. 21.

    Allah FK, Abe SY, Nunez CM, Khelil A, Cattin L, Morsli M, Bernede JC, Bougrine A, del Valle MA, Diaz FR (2007) Appl Surf Sci 253:9241–9247

    Article  CAS  Google Scholar 

  22. 22.

    Chen KJ, Hung FY, Chang SJ, Young SJ, Hu ZS, Chang SP (2010) J Sol-Gel Sci Technol 54:347–354

    Article  CAS  Google Scholar 

  23. 23.

    Kyaw AKK, Sun XW, Jiang CY (2009) J Sol-Gel Sci Technol 52:348–355

    Article  CAS  Google Scholar 

  24. 24.

    Goebbert C, Nonninger R, Aegerter MA, Schmidt H (1999) Thin Solid Films 351:79–84

    Article  CAS  Google Scholar 

  25. 25.

    Prodi-Schwab A, Luthge T, Jahn R, Herbig B, Lobmann P (2008) J Sol-Gel Sci Technol 47:68–73

    Article  CAS  Google Scholar 

  26. 26.

    Bilecka I, Djerdj I, Niederberger M (2008) Chem Commun 886–888

  27. 27.

    Bilecka I, Luo L, Djerdj I, Rossell MD, Jagodic M, Jaglicic Z, Masubuchi Y, Kikkawa S, Niederberger M (2011) J Phys Chem C 115:1484–1495

    Article  CAS  Google Scholar 

  28. 28.

    Tsaroucha M, Aksu Y, Irran E, Driess M (2011) Chem Mater 23:2428–2438

    Article  CAS  Google Scholar 

  29. 29.

    Coelho AA (2007) TOPAS-Academic V4.1.

  30. 30.

    Young RA (ed) (1993) The Rietveld Method. Oxford University Press, IUCr Book Series

    Google Scholar 

  31. 31.

    Finger LW, Cox DE, Jephcoat AP (1994) J Appl Crystallogr 27:892–900

    Article  CAS  Google Scholar 

  32. 32.

    Dollase WA (1986) J Appl Crystallogr 19:267–272

    Article  CAS  Google Scholar 

  33. 33.

    Snyder RL, Bunge HJ, Fiala J (eds) (1999) Defect and microstructure analysis from diffraction. Oxford University Press, New York, pp 94–126

  34. 34.

    Balzar D, Audebrand N, Daymond MR, Fitch A, Hewat A, Langford JI, Le Bail A, Louer D, Masson O, McCowan CN, Popa NC, Stephens PW, Toby BH (2004) J Appl Crystallogr 37:911–924

    Article  CAS  Google Scholar 

  35. 35.

    McCusker LB, Von Dreele RB, Cox DE, Louer D, Scardi P (1999) J Appl Crystallogr 32:36–50

    Article  CAS  Google Scholar 

  36. 36.

    Pitschke W, Hermann H, Mattern N (1993) J Appl Crystallogr 26:132–134

    Article  Google Scholar 

  37. 37.

    Karvaly B, Hevesi I (1971) Z Naturforsch A Phys Sci 26:245–249

    CAS  Google Scholar 

  38. 38.

    Wendlandt WW, Hecht HG (1966) Reflectance Spectroscopy. Wiley-Interscience, New York

    Google Scholar 

  39. 39.

    Murphy AB (2007) Sol Energy Mater Sol Cells 91:1326–1337

    Article  CAS  Google Scholar 

  40. 40.

    Stroppa DG, Montoro LA, Beltran A, Conti TG, da Silva RO, Andres J, Longo E, Leite ER, Ramirez AJ (2009) J Am Chem Soc 131:14544–14548

    Article  CAS  Google Scholar 

  41. 41.

    Shannon RD (1976) Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  42. 42.

    Hu JH, Gordon RG (1992) J Appl Phys 72:5381–5392

    Article  CAS  Google Scholar 

  43. 43.

    Kumar V, Sharma SK, Sharma TP, Singh V (1999) Opt Mater 12:115–119

    Article  CAS  Google Scholar 

  44. 44.

    Hamberg I, Granqvist CG (1986) J Appl Phys 60:R123–R159

    Article  CAS  Google Scholar 

  45. 45.

    Hammarberg E, Prodi-Schwab A, Feldmann C (2009) J Colloid Interface Sci 334:29–36

    Article  CAS  Google Scholar 

  46. 46.

    Yung KC, Liem H, Choy HS (2009) J Phys D Appl Phys 42:185002/1–5

    Google Scholar 

  47. 47.

    Benelmadjat H, Boudine B, Halimi O, Sebais M (2009) Opt Laser Technol 41:630–633

    Article  CAS  Google Scholar 

  48. 48.

    Sernelius BE, Berggren KF, Jin ZC, Hamberg I, Granqvist CG (1988) Phys Rev B 37:10244–10248

    Article  CAS  Google Scholar 

Download references


Financial support by ETH Zürich (ETH-07 09-2) is gratefully acknowledged. We also thank Niklaus Kränzlin for helpful discussions regarding the UV–Vis spectra measurements and analyses.

Author information



Corresponding author

Correspondence to Markus Niederberger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Luo, L., Häfliger, K., Xie, D. et al. Transparent conducting Sn:ZnO films deposited from nanoparticles. J Sol-Gel Sci Technol 65, 28–35 (2013).

Download citation


  • Transparent conducting films
  • Sn:ZnO
  • Nanoparticles
  • Microwave-assisted nonaqueous synthesis