Skip to main content
Log in

Effect of Bi2O3 addition on structure and magnetic properties of Ni0.5Zn0.5Fe2O4 nanofibers

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ni0.5Zn0.5Fe2O4 nanofibers with addition of 0–5 wt% Bi2O3 were synthesized by calcination of the electrospun polyvinylpyrrolidone/inorganic composite nanofibers at the temperature below the melting point of Bi2O3. The effects of Bi2O3 addition on the phase structure, morphology and magnetic properties of the nanofibers were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, selected area electron diffraction and vibrating sample magnetometer. It is found that the nanofiber diameter, crystallite size and magnetic parameters can be effectively tuned by simply adjusting the amount of Bi2O3 addition. The average diameter of Ni0.5Zn0.5Fe2O4 nanofibers doped with different contents of Bi2O3 ranges from 40 to 63 nm and gradually decreases with increasing Bi2O3 content. The addition of Bi2O3 does not induce the phase change and all the samples are a single-phase spinel structure. The amorphous Bi2O3 tends to concentrate on the nanoparticle surface and/or grain boundary and can retard the particles motion as well as the grain growth, resulting in a considerable reduction in grain size compared to the pristine sample. The specific saturation magnetization and coercivity of the nanofibers gradually decrease with the increase of Bi2O3 amount. Such behaviors are explained on the basis of chemical composition, surface effect, domain structure and crystal anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Priyadharsini P, Pradeep A, Rao PS, Chandrasekaran G (2009) Structural, spectroscopic and magnetic study of nanocrystalline Ni–Zn ferrites. Mater Chem Phys 116:207–213

    Article  CAS  Google Scholar 

  2. Lu XG, Liang GY, Sun QJ, Yang GH (2011) High-frequency magnetic properties of Ni–Zn ferrite nanoparticles synthesized by a low temperature chemical method. Mater Lett 65:674–676

    Article  CAS  Google Scholar 

  3. Wu KH, Yang FC (2007) Synthesis and characterization of organically modified silicate/NiZn ferrite hybrid coatings. Acta Mater 55:507–515

    Article  CAS  Google Scholar 

  4. Sun K, Lan ZW, Yu Z, Li LZ, Huang JM, Zhao XN (2008) Grain growth, densification and magnetic properties of Ni–Zn ferrites with Bi2O3 additive. J Phys D Appl Phys 41:235002

    Article  Google Scholar 

  5. Shokrollahi H (2008) Magnetic properties and densification of Manganese–Zinc soft ferrites (Mn1−xZnxFe2O4) doped with low melting point oxides. J Magn Magn Mater 320:463–474

    Article  CAS  Google Scholar 

  6. Kong LB, Li ZW, Lin GQ, Gan YB (2007) Electrical and magnetic properties of magnesium ferrite ceramics doped with Bi2O3. Acta Mater 55:6561–6572

    Article  CAS  Google Scholar 

  7. Yu Z, Sun K, Li LZ, Liu YF, Lan ZW, Zhang HW (2008) Influences of Bi2O3 on microstructure and magnetic properties of Mn–Zn ferrite. J Magn Magn Mater 320:919–929

    Article  CAS  Google Scholar 

  8. Thurn-Albrecht T, Schotter J, Kästle GA, EmLey N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black CT, Tuominen MT, Russell TP (2000) Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290:2126–2129

    Article  CAS  Google Scholar 

  9. Wu H, Zhang R, Liu XX, Lin DD, Pan W (2007) Electrospinning of Fe, Co., and Ni nanofibers: synthesis, assembly, and magnetic properties. Chem Mater 19:3506–3511

    Article  CAS  Google Scholar 

  10. Fan HM, Yi JB, Yang Y, Kho KW, Tan HR, Shen ZX, Ding J, Sun XW, Olivo MC, Feng YP (2009) Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications. ACS Nano 3:2798–2808

    Article  CAS  Google Scholar 

  11. Liu JR, Itoh M, Terada M, Horikawa MT, Machida KI (2007) Enhanced electromagnetic wave absorption properties of Fe nanowires in gigaherz range. Appl Phys Lett 91:093101

    Article  Google Scholar 

  12. Wang ZL, Liu XJ, Lv MF, Chai P, Liu Y, Meng J (2008) Preparation of ferrite MFe2O4 (M = Co, Ni) ribbons with nanoporous structure and their magnetic properties. J Phys Chem B 112:11292–11297

    Article  CAS  Google Scholar 

  13. Cavaliere S, Salles V, Brioude A, Lalatonne Y, Motte L, Monod P, Cornu D, Miele P (2010) Elaboration and characterization of magnetic nanocomposite fibers by electrospinning. J Nanopart Res 12:2735–2740

    Article  CAS  Google Scholar 

  14. Liu MQ, Shen XQ, Song FZ, Xiang J, Liu RJ (2011) Effect of heat treatment on particle growth and magnetic properties of electrospun Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers. J Sol-Gel Sci Technol 59:553–560

    Article  CAS  Google Scholar 

  15. Ren HM, Ding YH, Jiang Y, Xu F, Long ZL, Zhang P (2009) Synthesis and properties of ZnO nanofibers prepared by electrospinning. J Sol-Gel Sci Technol 52:287–290

    Article  CAS  Google Scholar 

  16. Albuquerque AS, Ardisson JD, Macedo WAA (1999) A study of nanocrystalline Ni–Zn-ferrite-SiO2 synthesized by sol-gel. J Magn Magn Mater 192:277–280

    Article  CAS  Google Scholar 

  17. Wu KH, Chang YC, Chang TC, Chiu YS, Wu TR (2004) Effects of SiO2 content and solution pH in raw materials on Ni–Zn ferrite magnetic properties. J Magn Magn Mater 283:380–384

    Article  CAS  Google Scholar 

  18. Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783

    Article  CAS  Google Scholar 

  19. Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372

    Article  CAS  Google Scholar 

  20. Liu Y, Qiu T (2007) Microstructure and magnetic characteristics of nanocrystalline Ni0.5Zn0.5 ferrite synthesized by a spraying-coprecipitation method. Chin Phys 16:3837–3842

    Article  CAS  Google Scholar 

  21. Kodama RH, Makhlouf SA, Berkowitz AE (1997) Finite size effects in antiferromagnetic NiO nanoparticles. Phys Rev Lett 79:1393–1396

    Article  CAS  Google Scholar 

  22. Stoner EC, Wohlfarth EP (1991) A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans Magn 27:3475–3518

    Article  CAS  Google Scholar 

  23. Vestal CR, Zhang ZJ (2003) Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. Nano Lett 3:1739–1743

    Article  CAS  Google Scholar 

  24. Dormann JL, Fiorani D, Tronc E (1999) On the models for interparticle interaction in nanoparticle assemblies: comparison with experimental results. J Magn Magn Mater 202:251–267

    Article  CAS  Google Scholar 

  25. Zhang W, Wang HX, Zhang FL, Qian ZN, Su WH (2010) Effect of surface modifications on the magnetic peroperties of Ni0.5Zn0.5Fe2O4 nanoparticles. J Mater Sci Technol 26:547–551

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 11KJB430006), the QingLan Project Foundation of Jiangsu Province and the Program for the Young Core Teacher of Jiangsu University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, J., Zhou, G., Shen, X. et al. Effect of Bi2O3 addition on structure and magnetic properties of Ni0.5Zn0.5Fe2O4 nanofibers. J Sol-Gel Sci Technol 62, 186–192 (2012). https://doi.org/10.1007/s10971-012-2707-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2707-9

Keywords

Navigation