Skip to main content
Log in

Preparing undoped and Mn-doped ZnO nanoparticles: a comparison between sol–gel and gel-combustion methods

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Undoped and Mn doped ZnO nanoparticles were synthesized by two wet chemical techniques: sol–gel and gel-combustion. We were able to prepare Mn-doped ZnO nanoparticles free from the second phases at calcining temperatures 400 and 500 °C using sol–gel and gel combustion, respectively. Complete crystallization occurs in both methods, but it is found that the crystallization is better performed in the ZnO based solid solution prepared by the sol–gel method. TEM images show that the average size of the nanoparticles synthesized by gel-combustion is smaller than that of prepared by sol–gel method. Optical characterizations such as vibrational properties, lattice dynamical parameters, absorption edges and optical band gap energies were also carried out by FTIR and UV–Vis spectroscopies. The quantitative estimations led to the conclusion that the effects of the method on the particle size and the optical band gap energy of the prepared samples are very significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brus L (1990) J Phys Chem 90:2555–2560

    Article  Google Scholar 

  2. Nepijko SA, Pippel E, Woltersdorf J (2006) Phys Stat Sol A 61:469–475

    Article  Google Scholar 

  3. Dinesha ML, Jayanna HS, Mohanty S, Ravi S (2010) J Alloy Compd 490:618–623

    Article  CAS  Google Scholar 

  4. Bhargava R, Sharma PK, Dutta RK, Kumar S, Panday AC, Kumar N (2010) Mat Chem Phys 120:393–398

    Article  CAS  Google Scholar 

  5. Jung D (2010) Solid State Sci 12:466–470

    Article  CAS  Google Scholar 

  6. Fang Y, Wen X, Yang S, Pang Q, Ding L, Wang J, Ge W (2005) J Sol-Gel Sci Techn 36:227–234

    Article  CAS  Google Scholar 

  7. Wang J, Shi N, Qi Y, Liu M (2010) J Sol-Gel Sci Techn 53:101–106

    Article  CAS  Google Scholar 

  8. Yang Z, Ye Z, Zhao B, Zong X, Wang P (2010) J Sol-Gel Sci Techn 54:282–285

    Article  CAS  Google Scholar 

  9. Selim MM, Deraz NM, El-Asmi AA, Elshfay O (2010) J Alloy Compd 506:541–547

    Article  CAS  Google Scholar 

  10. Jayakumar OD, Salunke HG, Kadam RM, Mohapatra M, Yaswant G, Kulshreshta SK (2006) Nanotechnology 17:1278–1285

    Article  CAS  Google Scholar 

  11. Lojkowski W, Gedanken A, Grzanka E, Opalinska A, Strachowski T, Pielaszek R, Tomaszewska-Grzeda A, Yatsunenko S, Godlewski M, Matysiak H, Kurzydlowski KJ (2009) J Nanopart Res 11:1991–2002

    Article  CAS  Google Scholar 

  12. Hwang CC, Wu TY (2004) J Mater Sci 39:6111–6115

    Article  CAS  Google Scholar 

  13. Chattopadhyay S, Dutta S, Banerjee A, Jana D, Bandyopadhyay S, Chattopadhyay S, Sarkar A (2009) Phys B 404:1509–1510

    Article  CAS  Google Scholar 

  14. Ebrahimizadeh Abrishami M, Hosseini SM, Kompany A (2011) J Appl Sci 11:1411–1415

    Article  Google Scholar 

  15. Kwon YJ, Kim KH, Lim CS, Shim KB (2002) J Ceram Process Res 3:146–149

    Google Scholar 

  16. Wang H, Xie C (2008) J Phys Chem Solids 69:2440–2444

    Article  CAS  Google Scholar 

  17. Shinde VR, Gujar TP, Lokhande CD, Mane RS, Han S-W (2006) Mat Chem Phys 96:326–330

    Article  CAS  Google Scholar 

  18. Morales AE, Mora ES, Pal U (2007) Rev Mex Fis 53:18–22

    CAS  Google Scholar 

  19. Senthilkumaar S, Rajendran K, Banerjee S, Chini TK, Sengodan V (2008) Mat Sci Semicon Proc 11:6–12

    Article  CAS  Google Scholar 

  20. Olguin D, Baquero R, de Coss R (2001) Rev Mex Fis 47:43–49

    CAS  Google Scholar 

  21. Kim KJ, Park YR (2002) Appl Phys Lett 81:1420–1422

    Article  CAS  Google Scholar 

  22. Ebrahimizadeh Abrishami M, Attaran Kakhki E, Hosseini SM, Kompany A (2010) Mod Phys Lett B 24:749–760

    Article  Google Scholar 

  23. Cedillo E, Ocampo J, Rivera V, Valenzuela R (1980) J Phys E Sci Instrum 13:383–386

    Article  CAS  Google Scholar 

  24. Rekha K, Nirmala M, Nair MG, Anukaliani A (2010) Phys B 405:3180–3185

    Article  CAS  Google Scholar 

  25. Deepa M, Bahadur N, Srivastava AK, Chaganti P, Sood KN (2009) J Phys Chem Solids 70:291–297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ebrahimizadeh Abrishami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebrahimizadeh Abrishami, M., Kompany, A., Hosseini, S.M. et al. Preparing undoped and Mn-doped ZnO nanoparticles: a comparison between sol–gel and gel-combustion methods. J Sol-Gel Sci Technol 62, 153–159 (2012). https://doi.org/10.1007/s10971-012-2701-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2701-2

Keywords

Navigation