Skip to main content
Log in

Formation of TiO2 ceramic foams from the integration of the sol–gel method with surfactants assembly and emulsion

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A general and potentially easy method for synthesizing TiO2 ceramic foams presenting hierarchical architecture of meso and macropores is presented here. The ceramics foaming method is based on the integration of the sol–gel process with sodium dodecyl sulfate (SDS) surfactant and oil droplets of isopropyl myristate (IPM) as dual pore templates. The main aim of this study was to evaluate the effect of ionic surfactant on the porous structure and specific surface area. The structural feature of these materials was characterized by analyzes of X-ray diffraction, nitrogen absorption/desorption isotherms, Hg porosimetry, He and Dried-Fluid® picnometers. Mercury intrusion porosimetry shows that SDS and IPM induce the formation of hierarchical structure composed of two families of pores, namely macro and mesopores. The relative population of each family and the average size of macropores could be finely tuned by adjusting the SDS quantity. In the presence of this surfactant, a single anatase crystalline phase was observed for titania foams fired at 600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Noemi A, Yolanda C, Alicia D (2010) Appl Catal A 385:101–107

    Article  Google Scholar 

  2. Kaneko EY, Pulcinelli SH, da Silva VT, Santilli CV (2002) Appl Catal A 235:71–78

    Article  CAS  Google Scholar 

  3. Zhang ZP, Ito S, O’Regan B, Kuang DB, Zakeeruddin SM, Liska P, Charvet R, Comte P, Nazeeruddin MK, Pechy P, Humphry-Baker R, Koyanagi T, Mizuno T, Gratzel M (2007) Phys Chem (Muenchen, Ger.) 221:319–327

    Article  CAS  Google Scholar 

  4. Demarne V, Balkanova S, Grisel A, Rosenfeld D, Levy F (1993) Sens Actuators B Chem 14:497–498

    Article  CAS  Google Scholar 

  5. Sokolov S, Paul B, Ortel E, Fischer A, Kraehnert R (2011) Langmuir 27:1972–1977

    Article  CAS  Google Scholar 

  6. Qing LW, Navaladian S, Stephen ER (2011) Langmuir 27:9557–9566

    Google Scholar 

  7. Carbajo MC, Maria C, Enciso E, Maria JT (2007) Colloids Surf A 293:72–79

    Article  CAS  Google Scholar 

  8. Fengqiu T, Hiroshi F, Jianxin Z, Yoshio S (2003) Scr Mater 49:735–740

    Article  Google Scholar 

  9. Soler-Illia GJAA, Louis A, Sanchez C (2002) Chem Mater 14:750–759

    Article  Google Scholar 

  10. Santos EP, Santilli CV, Pulcinelli SH (2003) J Sol Gel Sci Technol 26:165–169

    Article  CAS  Google Scholar 

  11. Backov R (2006) Soft Matter 2:452–464

    Article  CAS  Google Scholar 

  12. Alves Rosa MA, Santos EP, Santilli CV, Pulcinelli SH (2008) J Non Cryst Solids 354:4786–4789

    Article  CAS  Google Scholar 

  13. Martins L, Alves-Rosa MA, Pulcinelli SH, Santilli CV (2010) Microporous Mesoporous Mater 132:268–275

    Article  CAS  Google Scholar 

  14. Calleja G, Serrano DP, Sanz R, Pizarro P, Garcia A (2004) Ind Eng Chem Res 43:2485–2492

    Article  CAS  Google Scholar 

  15. Kim DS, Han SJ, Kwak SY (2007) J Colloid Interface Sci 316:85–91

    Article  CAS  Google Scholar 

  16. Kaminski RCK, Pulcinelli SH, Judeinstein P, Meneau F, Briois V, Santilli CV (2010) J Phys Chem C 114:1416–1423

    Article  CAS  Google Scholar 

  17. Klug HP, Alexander LE (1974) X-ray diffraction procedures. Wiley, New York

    Google Scholar 

  18. Gregg SJ, Sing KSW (1997) Adsorption, surface area and porosity. Academic Press Limited, London

    Google Scholar 

  19. Washburn EW (1921) Proc Natl Acad Sci 7:115–116

    Article  CAS  Google Scholar 

  20. Pachoski C, Kornowski A, Weller H (2002) Angew Chem Int Ed 41:1188–1191

    Article  Google Scholar 

  21. Santilli CV, Pulcinelli SH (1993) Cerâmica 259:11–16

    Google Scholar 

  22. Atanu M, Asim B, Bidyut KP (2008) Microporous Mesoporous Mater 109:66–72

    Article  Google Scholar 

  23. Oaki Y, Kotachi A, Miura T, Imai H (2006) Adv Funct Mater 16:1633–1639

    Article  CAS  Google Scholar 

  24. Mann S (2000) Angew Chem Int Ed 39:3392–3406

    Article  CAS  Google Scholar 

  25. Davis ME (2002) Nature 417:813–821

    Article  CAS  Google Scholar 

  26. Prakash SS, Brinker CJ, Hurd AJ, Rao SM (1995) Nature 374:439–443

    Article  CAS  Google Scholar 

  27. Manaia EB, Kaminski RCK, Soares CP, Meneau F, Pulcinelli SH, Santilli CV, Chiavacci LA (2012) J Sol Gel Sci Technol. doi:10.1007/s10971-011-2673-7

    Google Scholar 

Download references

Acknowledgments

This work has been financially supported by CAPES, CNPq and FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Ferreira Lins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lins, R.F., Alves-Rosa, M.A., Pulcinelli, S.H. et al. Formation of TiO2 ceramic foams from the integration of the sol–gel method with surfactants assembly and emulsion. J Sol-Gel Sci Technol 63, 224–229 (2012). https://doi.org/10.1007/s10971-012-2700-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2700-3

Keywords

Navigation