Skip to main content
Log in

Influence of thermal process on microstructural and physical properties of ambient pressure dried hydrophobic silica aerogel monoliths

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The experimental results of thermal process on the microstructural and physical properties of ambient pressure dried hydrophobic silica aerogel monoliths are reported and discussed. With sodium silicate as precursor, ethanol/hexamethyldisiloxane/hydrochloric acid as surface modification agent, the crack-free and high hydrophobic silica aerogel monoliths was obtained possessing the properties as low density (0.096 g/cm3), high surface area (651 m2/g), high hydrophobicity (~147°) and low thermal conductivity (0.0217 Wm/K). Silica aerogels maintained hydrophobic behavior up to 430 °C. After a thermal process changing from room temperature to 300 °C, the hydrophobicity remained unchanged (~128°), of which the porosity was 95.69% and specific density about 0.094 g/cm3. After high temperature treatment (300–500 °C), the density of final product decreased from 0.094 to 0.089 g/cm3 and porosity increased to 96.33%. With surface area of 466 m2/g, porosity of 91.21% and density about 0.113 g/cm3, silica aerogels were at a good state at 800 °C. Thermal conductivities at desired temperatures were analyzed by the transient plane heat source method. Thermal conductivity coefficients of silica aerogel monoliths changed from 0.0217 to 0.0981 Wm/K as temperature increased to 800 °C, revealed an excellent heat insulation effect during thermal process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hrubesh LW (1990) J Chem Ind 824:17

    Google Scholar 

  2. Bhagat SD, Kim YH, Ahn YS, Yeo JG (2007) Appl Surf Sci 253:3231

    Article  CAS  Google Scholar 

  3. Reim M, Korner W, Manara J, Korder S, Arduini-Schuster M, Ebert HP (2005) J Fricke Solar Energy 79:131

    Article  CAS  Google Scholar 

  4. Smirnova S, Suttiruengwong AW (2004) J Non-Cryst Solids 350:54

    Article  CAS  Google Scholar 

  5. Pajonk GM (1991) J Appl Catal 72:217

    Article  CAS  Google Scholar 

  6. Hrubesh LW, Coronado PR, Satcher JH Jr (2001) J Non-Cryst Solids 285:328

    Article  CAS  Google Scholar 

  7. Akimov YK (2003) R Instrum Exp Tech 46:287

    Article  CAS  Google Scholar 

  8. Carlson G, Lewis D, McKinley K, Richardson J, Tilloston T (1995) J Non-Cryst Solids 186:372

    Article  CAS  Google Scholar 

  9. Hüsing N, Schubert U (1998) J Angew Chem Int Ed 37:22

    Article  Google Scholar 

  10. Schwertfeger F, Frank D, Schmidt M (1998) J Non-Cryst Solids 225:24

    Article  CAS  Google Scholar 

  11. Schmidt M, Schwertfeger F (1998) J Non-Cryst Solids 225:364

    Article  CAS  Google Scholar 

  12. Kim GS, Hyun SH (2003) J Mater Sci 38:1961

    Article  CAS  Google Scholar 

  13. Rao AP, Pajonk GM, Rao AV (2005) J Mater Sci 40:3481

    Article  CAS  Google Scholar 

  14. Rao AV, Rao AP, Kulkarni MM (2004) J Non-Cryst Solids 350:224

    Article  CAS  Google Scholar 

  15. Rao AP, Rao AV, Pajonk GM (2007) J Appl Surf Sci 253:6032

    Article  CAS  Google Scholar 

  16. Reichenauer G, Scherer GW (2001) J Colloid Interf Sci 236:385

    Article  CAS  Google Scholar 

  17. Bi Z, Zhang Z, Xu F, Qian YY (1999) J Colloid Interf Sci 214:368

    Article  CAS  Google Scholar 

  18. Bikerman JJ (1958) Surface Chemistry: Theory and Applications, 2nd edn. Academic Press, New York, p 343

  19. Wang LJ, Zhao SY, Yang M (2009) J Mater Chem Phys 113:485

    Article  CAS  Google Scholar 

  20. Rao AV, Kalesh R, Amalnerkar DP, Seth T (2003) J Porous Mater 10:23

    Article  CAS  Google Scholar 

  21. Rassy HE, Pierre AC (2005) J Non-Cryst Solids 351:1603

    Article  Google Scholar 

  22. Zhou XC, Zhong LP, Xu YP (2008) J Inorg Mater 44:976

    Article  CAS  Google Scholar 

  23. Bhagat SD, Kim YH, Yi GB, Ahn YS, Yeo JG (2006) J Micropor Mesopor Mater 253:3231

    Google Scholar 

  24. Deshpande R, Smith DM, Brinker CJ (1992) J Non-Cryst Solids 144:32

    Article  CAS  Google Scholar 

  25. Lee S, Chad YC, Hwang HJ, Hwang HJ, Moon JW, Han IS (2007) J Mater Lett 61:3130

    Article  CAS  Google Scholar 

  26. Suh DJ, Park TJ, Sonn JH, Lim JC (1999) J Mater Sci Lett 18:1473

    Article  CAS  Google Scholar 

  27. Sarawade PB, Kim JK, Hilonga A, Kim HT (2010) Korean J Chem Eng 27(4):1301

    Article  CAS  Google Scholar 

  28. Burns GT, Deng Q, Field R, Hahn JM, Lengtz CW (1999) J Chem Mater 11:1275

    Article  CAS  Google Scholar 

  29. Pierre AC, Elaloui E, Pajonk GM (1998) J Langmuir 14:66

    Article  CAS  Google Scholar 

  30. Li WC, Lu AH, Guo SC (2002) J Colloid Interface Sci 254:153

    Article  CAS  Google Scholar 

  31. Sing KSW, Everett DH, Haul RW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) J Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (50802064, 51072137, and 11074189), New Century Excellent Talents in University of China (NCET-08-0405), National Science and Technology Support Program (2009BAC62B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Zhou, B., Ni, X. et al. Influence of thermal process on microstructural and physical properties of ambient pressure dried hydrophobic silica aerogel monoliths. J Sol-Gel Sci Technol 62, 126–133 (2012). https://doi.org/10.1007/s10971-012-2694-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2694-x

Keywords

Navigation