Skip to main content

Advertisement

Log in

Effects of pH on mechanical and morphological studies of silica filled polyvinyl chloride-50% epoxidized natural rubber (PVC-ENR50) nanocomposite

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Effects of pH on mechanical properties as well as morphological studies of sol–gel derived in situ silica in polyvinyl chloride-50% epoxidized natural rubber (PVC-ENR50) nanocomposites are reported. In particular, a range of acid concentrations was investigated. These nanocomposites were prepared by solution casting technique and tetraethoxysilane (TEOS) was used as the silica precursor. The prepared nanocomposites were characterized using tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The tensile test indicated that the highest mechanical strength was at 30% TEOS added for the nanocomposite prepared at pH 2.0. At pH 1.0 and 1.5 the maximum tensile strength reading was at 20% TEOS added with value of 24.3 and 24.5 MPa, respectively. SEM and TEM revealed the dispersion of silica particles in the polymer matrix. For nanocomposites prepared at pH 1.0 and 1.5, the silica particles were finely dispersed with the average size of 60 nm until 20% TEOS added. Meanwhile for nanocomposite prepared at pH 2.0, silica particles were homogenously distributed in the polymer matrix with average diameter of 30 nm until 30% TEOS and agglomerated after 30% TEOS loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Capek I (2006) Studies in interface science: nanocomposite structures and dispersions. Elsevier, Amsterdam

    Google Scholar 

  2. Chrusciel J, Slusarski L (2003) Mater Sci 21(4):461–469

    CAS  Google Scholar 

  3. Chernev GE, Samuneva BI, Djambaski PR, Salvado IMM, Fernandes HV (2006) Cent Euro Sci J 4(1):81–91

    CAS  Google Scholar 

  4. Ajayan PM, Schadler LS, Braun PV (2004) Nanocomposite science and technology. Wiley, Germany

    Google Scholar 

  5. Tanaka T, Montanari GC, Mulhaupt R (2004) IEEE Trans Dielec ElecInsul 11(5):763–784

    Article  CAS  Google Scholar 

  6. Sadeghi M, Khanbabei G, Dehaghani AHS, Aravand MA, Akbarzade M, Khatti S (2008) J Membrane Sci 322(2):423–428

    Article  CAS  Google Scholar 

  7. Ikeda I, Kameda S (2004) J Sol-Gel Sci Tech 31:137–142

    Article  CAS  Google Scholar 

  8. Kohjiya S, Ikeda Y (2003) J Sol-Gel Sci Tech 26:495–498

    Article  CAS  Google Scholar 

  9. Zhu A, Cai A, Zhou W, Shi Z (2008) J Appl Polym Sci 254:3745

    Article  CAS  Google Scholar 

  10. Min C, Wu T, Yang W, Chen C (2008) Compos Sci Tech 68:1570–1578

    Article  CAS  Google Scholar 

  11. Chrusciel J, Slusarski L (2003) Mater Sci 21:461–469

    CAS  Google Scholar 

  12. Bandyopadhyay A, Sarkar MD, Bhowmick AK (2005) J Mater Sci 40:53–62

    Article  CAS  Google Scholar 

  13. Bandyopadhyay A, Sarkar MD, Bhowmick AK (2006) J Mater Sci 41:5981–5993

    Article  CAS  Google Scholar 

  14. Bandyopadhyay A, Sarkar MD, Bhowmick AK (2004) J Appl Polym Sci 93:2579

    Article  CAS  Google Scholar 

  15. Das G, Ferraioli L, Bettotti P, Angelis FD, Mariotto G, Pavesi L, Fabrizio ED (2008) Thin Solid Films 516:6804

    Article  CAS  Google Scholar 

  16. Hashim A, Kawabata N, Kohjiya S (1995) J Sol-Gel Sci Tech 5:211–218

    Article  CAS  Google Scholar 

  17. Brinker CJ, Scherer GW (1990) Sol-Gel Sci. Academic Press, New York

    Google Scholar 

  18. Bandyopadhyay A, Bhowmick AK (2004) Rubb Chem Tech 77:830

    Article  CAS  Google Scholar 

  19. Chantara RT, Zaman K (1990) Polym Deg Stab 65:481

    Google Scholar 

  20. Mohammad N, Muchtar A, Ghazali MJ, Mohd D, Azhari CH (2008) Euro Polym J 24:538

    Google Scholar 

  21. Estella J, Echeverria JC, Laguna M, Garrido JJ (2007) J Non-Cryst Solids 353:286–294

    Article  CAS  Google Scholar 

  22. Curran MD, Stiegman AE (1999) J Non-Cryst Solids 249:62–68

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to express the most gratitude to Universiti Kebangsaan Malaysia and Malaysia Nuclear Agency for the opportunity to carry out this research. The work was partly supported by Fundamental Research grant Scheme (FRGS) ST06-FRGS-0015-2007 and Mini Budget Scholarship under Ministry of Higher Education Malaysia (MOHE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Karim or A. Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karim, J., Ahmad, A., Abdullah, I. et al. Effects of pH on mechanical and morphological studies of silica filled polyvinyl chloride-50% epoxidized natural rubber (PVC-ENR50) nanocomposite. J Sol-Gel Sci Technol 62, 7–12 (2012). https://doi.org/10.1007/s10971-011-2670-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2670-x

Keywords

Navigation