Skip to main content
Log in

Liquid-phase synthesis and application of monolithic porous materials based on organic–inorganic hybrid methylsiloxanes, crosslinked polymers and carbons

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Our recent progress in porous materials based on organic–inorganic hybrids, organic crosslinked polymers, and carbons is summarized. Flexible aerogels and aerogel-like xerogels with the polymethylsilsesquioxane (PMSQ) composition are obtained using methyltrimethoxysilane (MTMS) as the sole precursor. Preparation process and the flexible mechanical properties of these aerogels/xerogels are overviewed. As the derivative materials, hierarchically macro- and mesoporous PMSQ monoliths and marshmallow-like soft and bendable porous monoliths prepared from dimethyldimethoxysilane /MTMS co-precursors have been obtained. Organic crosslinked polymer monoliths with well-defined macropores are also tailored using gelling systems of vinyl monomers under controlled/living radical polymerization. The obtained polymer monoliths are carbonized and activated into activated carbon monoliths with well-defined pore properties. The activated carbon monoliths exhibit good electrochemical properties as the monolithic electrode. Some possibilities of applications for these porous materials are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Soler-Illia GJAA, Sanchez C, Lebeau B, Patarin J (2002) Chem Rev 102:4093–4138

    Article  Google Scholar 

  2. Kistler SS (1931) Nature 127:741

    Article  CAS  Google Scholar 

  3. Hüsing N, Schubert U (1998) Angew Chem Int Ed 37:22–45

    Article  Google Scholar 

  4. Pierre AC, Pajonk GM (2002) Chem Rev 102:4243–4265

    Article  CAS  Google Scholar 

  5. Nakanishi K (1997) J Porous Mater 4:67–112

    Article  CAS  Google Scholar 

  6. Kanamori K, Nakanishi K (2011) Chem Soc Rev 40:754–770

    Article  CAS  Google Scholar 

  7. Nakanishi K, Tanaka N (2007) Acc Chem Res 40:863–873

    Article  CAS  Google Scholar 

  8. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, San Diego

    Google Scholar 

  9. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Chem Rev 95:1409–1430

    Article  CAS  Google Scholar 

  10. Dong H, Lee M, Thomas RD, Zhang Z, Reidy RF, Mueller DW (2003) J Sol-Gel Sci Technol 28:5–14

    Article  CAS  Google Scholar 

  11. Dong H, Brook MA, Brennan JD (2005) Chem Mater 17:2807–2816

    Article  CAS  Google Scholar 

  12. Dong H, Zhang Z, Lee M-H, Mueller DW, Reldy RF (2007) J Sol-Gel Sci Technol 41:11–17

    Article  CAS  Google Scholar 

  13. Tillotson TM, Hrubesh LW (1992) J Non-Cryst Solids 145:44–50

    Article  CAS  Google Scholar 

  14. Emmerling A, Petricevic R, Beck A, Wang P, Scheller H, Fricke J (1995) J Non-Cryst Solids 185:240–248

    Article  CAS  Google Scholar 

  15. Yokogawa H, Yokoyama M (1995) J Non-Cryst Solids 186:23–29

    Article  CAS  Google Scholar 

  16. Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh A-MM (2002) Nano Lett 2:957–960

    Article  CAS  Google Scholar 

  17. Ilhan UF, Fabrizio EF, McCorkle L, Scheiman DA, Dass A, Palczer A, Meador MAB, Johnston JC, Leventis N (2006) J Mater Chem 16:3046–3054

    Article  CAS  Google Scholar 

  18. Kramer SJ, Rubio-Alonso F, Mackenzie JD (1996) Mater Res Soc Symp Proc 435:295–300

    Article  CAS  Google Scholar 

  19. Rao AV, Bhagat SD, Hirashima H, Pajonk GM (2006) J Colloid Interface Sci 300:279–285

    Article  CAS  Google Scholar 

  20. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) Adv Mater 19:1589–1593

    Article  CAS  Google Scholar 

  21. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2008) J Sol-Gel Sci Technol 48:172–181

    Article  CAS  Google Scholar 

  22. Kanamori K, Nakanishi K, Hanada T (2009) J Ceram Soc Jpn 117:1333–1338

    Article  CAS  Google Scholar 

  23. Schaefer DW, Keefer KD (1986) Phys Rev Lett 56:2199–2202

    Article  CAS  Google Scholar 

  24. Prakash SS, Brinker CJ, Hurd AJ, Rap SM (1995) Nature 374:439–443

    Article  CAS  Google Scholar 

  25. Schwertfeger F, Schmidt DFM (1998) J Non-Cryst Solids 225:24–29

    Article  CAS  Google Scholar 

  26. Parmenter KE, Milstein F (1998) J Non-Cryst Solids 223:179–189

    Article  CAS  Google Scholar 

  27. Alaoui AH, Woignier T, Scherer GW, Phalippou J (2008) J Non-Cryst Solids 354:1561–4556

    Article  Google Scholar 

  28. Kanamori K, Kodera Y, Hayase G, Nakanishi K, Hanada T (2011) J Colloid Interface Sci 357:336–344

    Article  CAS  Google Scholar 

  29. Kanamori K, Yonezawa H, Nakanishi K, Hirao K, Jinnai H (2004) J Sep Sci 27:874–886

    Article  CAS  Google Scholar 

  30. Hayase G, Kanamori K, Nakanishi K (2011) J Mater Chem 21:17077–17079

    Article  CAS  Google Scholar 

  31. Gusev I, Huang X, Horváth C (1999) J Chromatogr A 855:273–290

    Article  CAS  Google Scholar 

  32. Svec F (2010) J Chromatogr A 1217:902–924

    Article  CAS  Google Scholar 

  33. Pekala RW, Alviso CT, Kong FM, Hulsey SS (1992) J Non-Cryst Solids 145:90–98

    Article  CAS  Google Scholar 

  34. Al-Muhtaseb SA, Ritter JA (2003) Adv Mater 15:101–114

    Article  CAS  Google Scholar 

  35. Hanzawa Y, Kaneko K, Pekala RW, Dresselhaus MS (1996) Langmuir 12:6167–6169

    Article  CAS  Google Scholar 

  36. Frackowiak E, Béguin F (2001) Carbon 39:937–950

    Article  CAS  Google Scholar 

  37. Guiochon G (2007) J Chromatogr A 1168:101–168

    Article  CAS  Google Scholar 

  38. Braunecker WA, Matyjaszewski K (2007) Prog Polym Sci 32:93–146

    Article  CAS  Google Scholar 

  39. Matyjaszewski K, Xia J (2001) Chem Rev 101:2921–2990

    Article  CAS  Google Scholar 

  40. Hawker CJ, Bosman AW, Harth E (2001) Chem Rev 101:3661–3688

    Article  CAS  Google Scholar 

  41. Kamigaito M, Ando T, Sawamoto M (2001) Chem Rev 101:3689–3745

    Article  CAS  Google Scholar 

  42. Moad G, Rizzardo E, Thang SH (2005) Aust J Chem 58:379–410

    Article  CAS  Google Scholar 

  43. Yamago S (2009) Chem Rev 109:5051–5068

    Article  CAS  Google Scholar 

  44. Norisuye T, Morinaga T, Tran-Cong-Miyata Q, Goto A, Fukuda T, Shibayama M (2005) Polymer 46:1982–1994

    Article  CAS  Google Scholar 

  45. Yu Q, Zhou M, Ding Y, Jiang B, Zhu S (2007) Polymer 48:7058–7064

    Article  CAS  Google Scholar 

  46. Kanamori K, Nakanishi K, Hanada T (2006) Adv Mater 18:2407–2411

    Article  CAS  Google Scholar 

  47. Hasegawa J, Kanamori K, Nakanishi K, Hanada T, Yamago S (2009) Macromolecules 42:1270–1277

    Article  CAS  Google Scholar 

  48. Kanamori K, Hasegawa J, Nakanishi K, Hanada T (2008) Macromolecules 41:7186–7193

    Article  CAS  Google Scholar 

  49. Hasegawa G, Kanamori K, Nakanishi K, Yamago S (2011) Polymer, published online

  50. Hasegawa G, Kanamori K, Nakanishi K, Hanada T, Yamago S (2009) Macromol Rapid Commun 30:986–990

    Article  CAS  Google Scholar 

  51. Liang C, Dai S (2009) Chem Mater 21:2115–2124

    Article  CAS  Google Scholar 

  52. Tsujioka N, Hira N, Aoki S, Tanaka N, Hosoya K (2005) Macromolecules 38:9901–9903

    Article  CAS  Google Scholar 

  53. Yu C, Davey MH, Svec F, Fréchet JMJ (2001) Anal Chem 73:5088–5096

    Article  CAS  Google Scholar 

  54. Faure K, Blas M, Yassine O, Delaunay N, Crétier G, Albert M, Rocca J-L (2007) Electrophoresis 28:1668–1673

    Article  CAS  Google Scholar 

  55. Proczek G, Augustin V, Descroix S, Hennion M-C (2009) Electrophoresis 30:515–524

    Article  CAS  Google Scholar 

  56. Hasegawa J, Kanamori K, Nakanishi K, Hanada T (2010) CR Chimie 13:207–211

    Article  CAS  Google Scholar 

  57. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) Carbon 48:1757–1766

    Article  CAS  Google Scholar 

  58. Neely JW (1981) Carbon 19:27–36

    Article  CAS  Google Scholar 

  59. Taguchi A, Smått J-H, Lindén M (2003) Adv Mater 15:1209–1211

    Article  CAS  Google Scholar 

  60. Lee KT, Lytle JC, Ergang NS, Oh SM, Stein A (2005) Adv Funct Mater 15:547–556

    Article  CAS  Google Scholar 

  61. Pang J, John VT, Loy DA, Yang Z, Lu Y (2005) Adv Mater 17:704–707

    Article  CAS  Google Scholar 

  62. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) Chem Commun 46:8037–8039

    Article  CAS  Google Scholar 

  63. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) J Mater Chem 19:7716–7720

    Article  Google Scholar 

  64. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) Chem Mater 22:2541–2547

    Article  CAS  Google Scholar 

  65. Hasegawa G, Kanamori K, Nakanishi K, submitted

  66. Liu R, Shi Y, Wan Y, Meng Y, Zhang F, Gu D, Chen Z, Tu B, Zhao D (2006) J Am Chem Soc 128:11652–11662

    Article  CAS  Google Scholar 

  67. Wei H, Lv Y, Han L, Tu B, Zhao D (2011) Chem Mater 23:2353–2360

    Article  CAS  Google Scholar 

  68. Hasegawa G, Aoki M, Kanamori K, Nakanishi K, Hanada T, Tadanaga K (2011) J Mater Chem 21:2060–2063

    Article  CAS  Google Scholar 

  69. Fan L-Z, Hu Y-S, Maier J, Adelhelm P, Smarsly B, Antonietti M (2007) Adv Funct Mater 17:3083–3087

    Article  CAS  Google Scholar 

  70. Ruiz V, Blanco C, Santamaría R, Ramos-Fernández JM, Martínez-Escandell M, Sepúlveda-Escribano A, Rodríguez-Reinoso F (2009) Carbon 47:195–200

    Article  CAS  Google Scholar 

  71. Carriazo D, Picó F, Gutiérrez MC, Rubio F, Rojo JM, del Monte F (2010) J Mater Chem 20:773–780

    Article  CAS  Google Scholar 

  72. Kanamori K (2011) J Ceram Soc Jpn 119:16–22

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank all the coworkers who supported him, gave critical ideas to him, and contributed to his experimental works. Most of the names of the coworkers appear as the co-authors in the references. Financial supports such as Grant-in-Aid for Scientific Research and Global COE Program from Ministry of Education, Culture, Sports, Science and Technology (MEXT) Japan and Japan Society for the Promotion of Science (JSPS) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Kanamori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanamori, K. Liquid-phase synthesis and application of monolithic porous materials based on organic–inorganic hybrid methylsiloxanes, crosslinked polymers and carbons. J Sol-Gel Sci Technol 65, 12–22 (2013). https://doi.org/10.1007/s10971-011-2662-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2662-x

Keywords

Navigation