Skip to main content
Log in

Formation and characterization of phosphate-modified silicate materials derived from sol–gel process

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Phosphate-containing silicate materials prepared using sol–gel method from Si(OC2H5) were investigated at the variation of the amount of phosphate modifier from 5 to 50 wt% in term of P2O5. Chemical composition, textural and structural properties of these materials were characterized by FTIR-spectroscopy, TEM, X-ray diffraction and nitrogen adsorption. It was shown that the materials posse monomodal pore size distribution of 5–20 nm for the samples dried at 100 °C and 40–60 nm for the specimens calcined at 600 °C. The mean pore size and surface area depended on the amount of phosphoric acid. Before the stage of high temperature treatment phosphoric acid, introduced into the structure of the materials as a modifying agent, was uniformly distributed inside a porous space of the material and was not chemically bonded with silicate. After high temperature treatment both chemical interaction of silicate with phosphate, providing the formation of silicate-phosphate structures, as well as redistribution of free modifier from the bulk of granules to their surface took place. The polyphosphate layer is formed on the material surface closing the internal porous space. However, in this case a part of the phosphate modifier remains chemically unbound to SiO2 structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Plotnichenko VG, Sokolov VO, Koltashev VV, Dianov EM (2002) J Non Cryst Solids 306:209–226

    Article  CAS  Google Scholar 

  2. Massiot Ph, Centeno MA, Carrizosa I, Odriozola JA (2001) J Non Cryst Solids 29:158–166

    Article  Google Scholar 

  3. Aguiar H, Serra J, Conzaler P, Leon B (2009) J Non Cryst Solids 29:158–166

    Google Scholar 

  4. O’Donnell MD, Watts SJ, Law RV, Hill RG (2008) J Non Cryst Solids 354:3554–3560

    Article  Google Scholar 

  5. Wegner S, van Wullen L, Tricot G (2008) J Non Cryst Solids 354:1703–1714

    Article  CAS  Google Scholar 

  6. Shabanova NA, Sarkisov PD (2004) Fundamentals of sol–gel technology nanodispersed silica. Akademkniga, Moscow (in Russian)

  7. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, London

    Google Scholar 

  8. Kirik SD, Belousov OV, Parfenov VA, Vershinina MA (2005) Glass Phys Chem 31(4):439–451

    Article  CAS  Google Scholar 

  9. Potapov VV, Serdan AA, Kashpura VN, Gorbach VA (2007) Russ J Phys Chem A 81(10):1698–1702

    Google Scholar 

  10. Fidalgo A, Rosa ME, Ilharco LM (2003) Chem Mater 15:2186–2192

    Article  CAS  Google Scholar 

  11. Izaak TI, Vodyankina OV (2009) Russ Chem Rev 78(1):77–88

    Article  CAS  Google Scholar 

  12. Elisa M, Sava BA, Volceanov A, Monteiro RCC, Alves E, Franco N, Costa Oliveira FA, Fernandes H, Ferro MC (2010) J Non Cryst Solids 356:495–501

    Article  CAS  Google Scholar 

  13. Takahashi M, Suzuki M, Miyagawa Y, Ihara R, Tokuda Y, Yoko T, Nemoto T, Isoda SJ (2010) Sol–Gel Sci Technol 54:319–324

    Article  CAS  Google Scholar 

  14. Kostrich LN, Mangasaryan NA, Makincian AYa, Kudrova OYa, Dagasheva SM (1983) Colloidal J (in Russian) 45(2):337–340

  15. Panasyuk GP, Ambartsumyan SG, Budova GP, Danchevskaya MN, Smirnov VN (1988) Inorg Mater (in Russian) 24(5):775–779

    Google Scholar 

  16. Kim YE, Tressler RE (1994) J Mater Sci 29:2531–2542

    Article  CAS  Google Scholar 

  17. Weeding TL, de Jong BHWS, Veeman WS, Aitken BG (1982) Nature 318:352–359

    Article  Google Scholar 

  18. Massiot Ph, Centeno MA, Gouriou M, Domínguez MI, Odriozola JA (2003) J Mater Chem 13:67–74

    Article  CAS  Google Scholar 

  19. Liu HS, Chin TS, Yung SW (1997) Mater Chem Phys 50:1–10

    Article  CAS  Google Scholar 

  20. Stan M, Vasilescu A, Moscu S, Zaharescu M (1998) Rev Roum Chim 43(5):425–432

    Google Scholar 

  21. Matsuda A, Kanzaki T, Tatsumisago M, Minani T (2001) Solid State Ionic 145:161–166

    Article  CAS  Google Scholar 

  22. Magaev OV, Knyazev AS, Vodyankina OV, Dorofeeva NV, Salanov AN, Boronin AI (2008) J Appl Catal A-Gen 344:142–149

    Article  CAS  Google Scholar 

  23. Dorofeeva NV, Knyazev AS, Radishevskaya NI, Salanov AN, Shilyaeva LP, Sudakova NN, Vodyankina OV (2007) Russ J Phys Chem A 81(5):788–793

    Article  CAS  Google Scholar 

  24. Karnaukhov AP (1999) Adsorption. The texture of dispersed and porous materials. Nauka, Novosibirsk [in Russian]

  25. Aronne A, Turco M, Bagnasco G, Pernice P, Di Serio M, Clayden NJ, Marenna E, Fanelli E (2005) Chem Mater 17:2081–2090

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Federal Program “Scientific and scientific-educational professional community of innovated Russia in 2009–2013”, was partially supported by the Grant of the Ministry for Education and Science of the Russian Federation (contract No. 13.G36.31.0001 dated 07.09.2010), and was financially supported by the Federal target program «Studies and Development of Russia’s Scientific and Technological Priorities for 2007–2013».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Epiphanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epiphanova, A., Magaev, O. & Vodyankina, O. Formation and characterization of phosphate-modified silicate materials derived from sol–gel process. J Sol-Gel Sci Technol 61, 509–517 (2012). https://doi.org/10.1007/s10971-011-2652-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2652-z

Keywords

Navigation