Skip to main content
Log in

Sol–gel-derived titania-hydroxypropylcellulose hybrid thin films of high refractive indices: solution components affecting the refractive index and uncracking critical thickness

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Optically transparent, ca. 200–800 nm thick TiO2-hydroxypropylcellulose (HPC) hybrid thin films were prepared from Ti(OC3H i7 )4–HPC–HCl–H2O–C3H i7 OH solutions by the sol–gel method, where the as-deposited films were dried at 120 °C. The effects of the amount of HPC, H2O and HCl in the starting solutions on the refractive index and uncracking critical thickness of the films were studied, where the effects on the critical thickness was discussed on the basis of in situ stress measurements during heating. The increase in HPC content increased the critical thickness and lowered the refractive index. The increase in HCl content resulted in a decrease in critical thickness and an increase in refractive index. Larger H2O contents gave rise to a maximum in critical thickness while the refractive index was unaffected. Such variation in critical thickness with varying solution compositions was demonstrated to result from the differences in in-plane stress generated during heating. By optimizing the processing parameters an 810 nm thick TiO2–HPC hybrid film of a refractive index of 1.84 was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lü C, Yang B (2009) J Mater Chem 19:2884–2901

    Article  Google Scholar 

  2. Kim JS, Yang SC, Bae BS (2010) Chem Mater 22:3549–3555

    Article  CAS  Google Scholar 

  3. Nagpal VJ, Davis RM (1995) J Mater Res 10:3068–3078

    Article  CAS  Google Scholar 

  4. Kusabe M, Kozuka H, Abe S, Suzuki H (2007) J Sol Gel Sci Technol 44:111–118

    Article  CAS  Google Scholar 

  5. Halamus T, Wojciechowski P, Bobowska I (2008) Polym Adv Technol 19:807–811

    Article  CAS  Google Scholar 

  6. Halamus T, Wojciechowski P (2007) Polym Adv Technol 18:411–417

    Article  CAS  Google Scholar 

  7. Zhao G, Tian Q, Liu Q, Han G (2005) Surf Coat Technol 198:55–58

    Article  CAS  Google Scholar 

  8. Mont FW, Kim JK, Schubert MF, Schubert EF, Siegel RW (2008) J Appl Phys 103:083120

    Article  Google Scholar 

  9. Chau JLH, Lin YM, Li AK, Su WF, Chang KS, Hsu SLC, Li TL (2007) Mater Lett 61:2908–2910

    Article  CAS  Google Scholar 

  10. Liu Y, Lu C, Li M, Zhang L, Yang B (2008) Colloids Surf. A Physicochem Eng Asp 328:67–72

    Article  CAS  Google Scholar 

  11. Lee LH, Chen WC (2001) Chem Mater 13:1137–1142

    Article  CAS  Google Scholar 

  12. Su HW, Chen WC (2008) Macromol Chem Phys 209:1778–1786

    Article  CAS  Google Scholar 

  13. Liou GS, Lin PH, Yen HJ, Yu YY, Chen WC (2010) J Polym Sci A Polym Chem 48:1433–1440

    Article  CAS  Google Scholar 

  14. Liou GS, Lin PH, Yen HJ, Yu YY, Tsai TW, Chen WC (2010) J Mater Chem 20:531–536

    Article  CAS  Google Scholar 

  15. Nakayama N, Hayashi T (2007) J Appl Polym Sci 105:3662–3672

    Article  CAS  Google Scholar 

  16. Xiong M, Zhou S, You B, Wu L (2004) J Polym Sci B Polym Phys 43:637–649

    Article  Google Scholar 

  17. Wang F, Luo Z, Qing S, Qiu Q, Li R (2009) J Alloy Comp 486:521–526

    Article  CAS  Google Scholar 

  18. Ochi M, Nii D, Suzuki Y, Harada M (2010) J Mater Sci 45:2655–2661

    Article  CAS  Google Scholar 

  19. Sorek Y, Zevin M, Reisfeld R (1997) Chem Mater 9:670–676

    Article  CAS  Google Scholar 

  20. Bobowska I, Wojciechowski P, Halamus T (2008) Polym Adv Technol 19:1860–1867

    Article  CAS  Google Scholar 

  21. He Y, Wang JA, Pei CL, Song JZ, Zhu D, Chen J (2010) J Nanopart Res 12:3019–3024

    Article  CAS  Google Scholar 

  22. Pal E, Sebok D, Hornok V, Dekany I (2009) J Colloid Interface Sci 332:173–182

    Article  CAS  Google Scholar 

  23. Iwasaki M, Kashimura K, Masaki H, Ito S (2003) J Sol Gel Sci Tecnol 26:389–392

    Article  CAS  Google Scholar 

  24. Ribeiro SJL, Messaddeq Y, Goncalves RR, Ferrari M, Montagna M, Aegerter MA (2000) Appl Phys Lett 77:3502–3504

    Article  CAS  Google Scholar 

  25. Stoney GG (1909) Proc R Soc Lond A 82:172–175

    Article  CAS  Google Scholar 

  26. Brantly WA (1973) J Appl Phys 44:534–535

    Article  Google Scholar 

  27. Kozuka H (2006) J Sol Gel Sci Technol 40:287–297

    Article  CAS  Google Scholar 

  28. Look JL, Zukoski CF (1992) J Am Ceram Soc 75:1587–1595

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromitsu Kozuka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oda, S., Uchiyama, H. & Kozuka, H. Sol–gel-derived titania-hydroxypropylcellulose hybrid thin films of high refractive indices: solution components affecting the refractive index and uncracking critical thickness. J Sol-Gel Sci Technol 61, 484–493 (2012). https://doi.org/10.1007/s10971-011-2649-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2649-7

Keywords

Navigation