Journal of Sol-Gel Science and Technology

, Volume 61, Issue 2, pp 390–402 | Cite as

Photocatalytic degradation of metoprolol in water suspension of TiO2 nanopowders prepared using sol–gel route

  • Maja Šćepanović
  • Biljana Abramović
  • Aleksandar Golubović
  • Sanja Kler
  • Mirjana Grujić-Brojčin
  • Zorana Dohčević-Mitrović
  • Biljana Babić
  • Branko Matović
  • Zoran V. Popović
Original Paper

Abstract

Nanocrystalline titanium dioxide (TiO2) powders have been synthesized by sol–gel method using titanium tetrachloride (TiCl4) or tetrabutyl titanate (Ti(OC4H9)4 as precursors, different alcohols and calcination temperatures in the range from 400 to 650 °C. The photocatalytic activity of as-prepared powders has been tested for the degradation of metoprolol tartrate salt, a selective β-blocker used to treat a variety of cardiovascular diseases, and compared to photocatalytic activity obtained from Degussa P25. Nanosized TiO2 powders prepared from TiCl4 and amyl-alcohol, calcined at 550 °C, displayed an activity comparable to Degussa P25, whereas the sample from the same series, calcined at 650 °C, showed higher photocatalytic activity in the whole range of the catalyst loading. Structural, morphological and surface properties of synthesized TiO2 nanopowders have been investigated by XRD, SEM, EDS and BET measurements, as well as FTIR and Raman spectroscopy, in order to find out the material properties which enable rapid an efficient decomposition of metoprolol under UV radiation.

Keywords

Nanopowder TiO2 Sol–gel synthesis Raman spectroscopy Photocatalysis 

References

  1. 1.
    Klavarioti M, Mantzavinos D, Kassinos D (2009) Environ Int 35:402–417CrossRefGoogle Scholar
  2. 2.
    Ikehata K, Naghashkar NJ, El-Din MG (2006) Ozone-Sci Eng 28:353–414CrossRefGoogle Scholar
  3. 3.
    Alder AC, Schaffner C, Majewsky M, Klasmeier J, Fenner K (2010) Water Res 44:936–948CrossRefGoogle Scholar
  4. 4.
    Rivas FJ, Gimeno O, Borralho T, Carbajo M (2010) J Hazard Mater 179:357–362CrossRefGoogle Scholar
  5. 5.
    Liu QT, Cumming RI, Sharpe AD (2009) Photochem Photobiol Sci 8:768–777CrossRefGoogle Scholar
  6. 6.
    Piram A, Salvador A, Verne C, Herbreteau B, Faure R (2008) Chemosphere 73:1265–1271CrossRefGoogle Scholar
  7. 7.
    Dalrymple OK, Yeh DH, Trotz MA (2007) J Chem Technol 82:121–134Google Scholar
  8. 8.
    Yang H, An T, Li G, Song W, Cooper WJ, Luo H, Guo X (2010) J Hazard Mater 179:834–839CrossRefGoogle Scholar
  9. 9.
    Romero V, De la Cruz N, Dantas RF, Marco P, Giménez J, Esplugas S (2011) Catal Today 161:115–120CrossRefGoogle Scholar
  10. 10.
    Abramović B, Kler S, Šojić D, Laušević M, Radović T, Vione D (in press) J Hazard MaterGoogle Scholar
  11. 11.
    Doll TE, Frimmel FH (2003) Chemosphere 52:1757–1769CrossRefGoogle Scholar
  12. 12.
    Colón G, Hidalgo MC, Navío JA (2001) J Photoch Photobiol A 138:79–85CrossRefGoogle Scholar
  13. 13.
    Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) J Phys Chem B 107:4545–4549CrossRefGoogle Scholar
  14. 14.
    Baiju KV, Shukla S, Sandhya KS, James J, Warrier KGK (2007) J Phys Chem C 111:7612–7622CrossRefGoogle Scholar
  15. 15.
    Golubović A, Šćepanović M, Kremenović A, Aškrabić A, Berec V, Dohčević-Mitrović Z, Popović ZV (2009) J Sol–Gel Sci Techn 49:311–319CrossRefGoogle Scholar
  16. 16.
    Du YL, Deng Y, Zhang MS (2006) J Phys Chem Solids 67:2405–2408CrossRefGoogle Scholar
  17. 17.
    Bala H, Guo Y, Zhao X, Zhao J, Fu W, Ding X, Jiang Y, Yu K, Lv X, Wang Y (2006) Mater Lett 60:494–498CrossRefGoogle Scholar
  18. 18.
    Liu AR, Wang SM, Zhao YR, Zheng Z (2006) Mater Chem Phys 99:131–134CrossRefGoogle Scholar
  19. 19.
    Sugimoto T, Zhou X, Muramatsu A (2003) J Colloid Interf Sci 259:43–52CrossRefGoogle Scholar
  20. 20.
    Swamy V, Menzies D, Muddle BC, Kuznetsov A, Dubrovinsky LS, Dai Q, Dmitriev V (2006) Appl Phys Lett 88(1–3):243103CrossRefGoogle Scholar
  21. 21.
    Li G, Li L, Boerio-Goates J, Woodfield BF (2005) J Am Chem Soc 127:8659–8666CrossRefGoogle Scholar
  22. 22.
    Kraus W, Nozle G (2000) Power cell program for windows. BAM, BerlinGoogle Scholar
  23. 23.
    Begin-Colin S, Gadalla A, Le Caer G, Humbert O, Thomas F, Barres O, Villieras F, Toma LF, Bertrand G, Zahraa O, Gallart M, Honerlage B, Gilliot P (2009) J Phys Chem C 113:16589–16602CrossRefGoogle Scholar
  24. 24.
    Gonzalez RJ, Zallen R, Berger H (1997) Phys Rev B 55:7014–7017CrossRefGoogle Scholar
  25. 25.
    Gervais F, Baumard JF (1977) Solid State Commun 21:861–865CrossRefGoogle Scholar
  26. 26.
    Grujić-Brojčin M, Šćepanović MJ, Dohčević-Mitrović ZD, Hinić I, Matović B, Stanišić G, Popović ZV (2005) J Phys D Appl Phys 38:1415–1420CrossRefGoogle Scholar
  27. 27.
    Franking RA, Landis EC, Hamers RJ (2009) Langmuir 25:10676–10684CrossRefGoogle Scholar
  28. 28.
    Li L, Shen Q, Cheng J, Hao Z (2010) Catal Today 158:361–369CrossRefGoogle Scholar
  29. 29.
    Soria J, Sanz J, Sobrados I, Coronado JM, Maira AJ, Hernandez-Alonso MD, Fresno F (2007) J Phys Chem C 111:10590–10596CrossRefGoogle Scholar
  30. 30.
    Goncalves RH, Schreiner WH, Leite ER (2010) Langmuir 26:11657–11662CrossRefGoogle Scholar
  31. 31.
    Araña J, Doña-Rodrıguez JM, González-Díaz O, Tello Rendón E, Herrera Melián JA, Colón G, Navío JA, Pérez Peña J (2004) J Mol Catal A-Chem 215:153–160CrossRefGoogle Scholar
  32. 32.
    Šćepanović MJ, Grujić-Brojčin MU, Dohčević-Mitrović ZD, Popović ZV (2006) Mat Sci Forum 518:101–106CrossRefGoogle Scholar
  33. 33.
    Šćepanović MJ, Grujić-Brojčin MU, Dohčević-Mitrović ZD, Popović ZV (2007) Appl Phys A 86:365–371CrossRefGoogle Scholar
  34. 34.
    Wang X, Shen J, Pan Q (2011) J Raman Spec 42:1578–1582CrossRefGoogle Scholar
  35. 35.
    Spanier JE, Robinson RD, Zhang F, Chan S-W, Herman IP (2001) Phys Rev B 64(1–8):245407CrossRefGoogle Scholar
  36. 36.
    Grujić-Brojčin MU, Šćepanović MJ, Dohčević-Mitrović ZD, Popović ZV (2009) Acta Phys Polonica A 116:5–54Google Scholar
  37. 37.
    Parker JC, Siegel RW (1990) Appl Phys Lett 57:943–945CrossRefGoogle Scholar
  38. 38.
    Tompsett GA, Bowmaker GA, Cooney RP, Metson JB, Rodgers KA, Seakins JM (1995) J Raman Spectrosc 26:57–62CrossRefGoogle Scholar
  39. 39.
    Liu H, Yang D, Zheng Z, Ke X, Waclawik E, Zhu H, Frost RL (2010) J Raman Spectrosc 41:1331–1337CrossRefGoogle Scholar
  40. 40.
    Zhang Y-H, Chan CK, Porter JF, Guo W (1998) J Mater Res 13:2602–2609CrossRefGoogle Scholar
  41. 41.
    Deiana C, Fois E, Coluccia S, Martra G (2010) J Phys Chem C 114:21531–21538CrossRefGoogle Scholar
  42. 42.
    Watson S, Beydoun D, Scott J, Amal R (2004) J Nanoparticle Res 6:193–207CrossRefGoogle Scholar
  43. 43.
    Cerrato G, Magnacca G, Mortera C, Montero J, Anderson JA (2009) J Phys Chem C 113:20401–20410CrossRefGoogle Scholar
  44. 44.
    Martra G (2000) Appl Catal A: General 200:275–285CrossRefGoogle Scholar
  45. 45.
    Asher SA, Tuschel DD, Vargson TA, Wang L, Geib SJ (2011) J Phys Chem A 115:4279–4287CrossRefGoogle Scholar
  46. 46.
    Brownson JRS, Tejedor–Tejedor MI, Andersonbrownson MA (2005) Chem Mater 17:6304–6310CrossRefGoogle Scholar
  47. 47.
    Yang D, Liu H, Zheng Z, Yuan Y, Zhao J, Waclawik ER, Ke X, Zhu H (2009) J Am Chem Soc 131:17885–17893CrossRefGoogle Scholar
  48. 48.
    Abramović B, Šojić D, Despotović V, Vione D, Pazzi M, Csanádi J (2011) Appl Catal B Environ 105:191–198CrossRefGoogle Scholar
  49. 49.
    Liu G, Sun C, Cheng L, Jin Y, Lu H, Wang L, Smith SC, Lu GQ, Cheng H-M (2009) J Phys Chem C 113:12317–12324CrossRefGoogle Scholar
  50. 50.
    Vinu R, Madras G (2010) J Indian I Sci 90:189–230Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Maja Šćepanović
    • 1
  • Biljana Abramović
    • 2
  • Aleksandar Golubović
    • 1
  • Sanja Kler
    • 2
  • Mirjana Grujić-Brojčin
    • 1
  • Zorana Dohčević-Mitrović
    • 1
  • Biljana Babić
    • 3
  • Branko Matović
    • 3
  • Zoran V. Popović
    • 1
  1. 1.Institute of PhysicsUniversity of BelgradeBelgradeSerbia
  2. 2.Department of Chemistry, Biochemistry and Environmental Protection, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
  3. 3.Institute of Nuclear Sciences “Vinča”University of BelgradeBelgradeSerbia

Personalised recommendations