Skip to main content

Low-temperature combustion synthesis of CuCr2O4 spinel powder for spectrally selective paints

Abstract

CuCr2O4 spinel powder with high quality black hue, investigated as solar-absorbing pigment for spectrally selective paint, was synthesized by an environmental friendly sol–gel combustion process using citric acid as the fuel and metal nitrates as oxidizers. Single-phase CuCr2O4 spinel crystals were obtained after heat treatment of the as-burnt powder at a low temperature (600 °C) and the average crystallite size of the CuCr2O4 powders increased with the calcining temperature. Morphological analysis of powders calcined at various temperatures was done by field emission scanning electron microscopy. CuCr2O4 powder calcined at 700 °C was chosen as pigment to fabricate thickness sensitive spectrally selective paint coatings by simple spray-coating technique. For the sake of comparison, the as-burnt powder composed of mixed metal oxides (i.e., CuO and Cr2O3) was also used as pigment. The results reveal that the spinel CuCr2O4 based paint coatings exhibit much higher spectral selectivity (α s = 0.88–0.91, ε 100 = 0.27–0.35) which is depending on the coating thicknesses than that of coatings using as-burnt powder as pigment (α s = 0.83–0.88, ε 100 = 0.60–0.66). The CuCr2O4-based paint coatings showed no visible degradation after 600 h of condensation test and the performance criterion value is 0.04, indicating that the coatings have excellent long term stability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Mastai Y, Polarz S, Antonietti M (2002) Adv Funct Mater 12:197–202

    Article  CAS  Google Scholar 

  2. Costa MF, Teixeira V, Nunes C (1999) Proc SPIE 3789:140–148

    Article  CAS  Google Scholar 

  3. Zang Q, Mills D (1992) Sol Energy Mater Sol Cells 27:273–290

    Article  Google Scholar 

  4. Kaluža L, Vuk AŠ, Boris O, Dražič G, Pelicon P (2001) J Sol-Gel Sci Techn 20:61–83

    Article  Google Scholar 

  5. Vince J, Vuk AŠ, Krašovec UO, Orel B (2003) Sol Energy Mater Sol Cells 79:313–330

    Article  CAS  Google Scholar 

  6. Bayon R, Vicente GS, Maffiotte C, Morales A (2008) Sol Energy Mater Sol Cells 92:1211–1216

    Article  CAS  Google Scholar 

  7. Bayon R, Vicente GS, Morales A (2010) Sol Energy Mater Sol Cells 94:998–1004

    Article  CAS  Google Scholar 

  8. Katumba G, Lu J, Olumekor L, Westin G, Wäckelgård E (2005) J Sol-Gel Sci Techn 36:33–43

    Article  CAS  Google Scholar 

  9. Geng QF, Zhao X, Gao XH, Liu G (2011) J Am Ceram Soc 94:827–832

    Article  CAS  Google Scholar 

  10. Kaluža L, Oral B, Dražič G, Kohl M (2001) Sol Energy Mater Sol Cells 70:187–201

    Article  Google Scholar 

  11. Kunič R, Koželj M, Orel B, Vuk AŠ, Vilčnik A, Perše LS, Merlini D, Brunold S (2009) Sol Energy Mater Sol Cells 93:630–640

    Article  Google Scholar 

  12. Bayón R, Vicente GS, Maffiotte C, Morales Á (2008) Renew Energy 33:348–353

    Article  Google Scholar 

  13. Bayón R, Vicente GS, Morales Á (2010) Sol Energy Mater Sol Cells 94:998–1004

    Article  Google Scholar 

  14. Orel ZC, Gunde MK (2000) Sol Energy Mater Sol Cells 61:445–450

    Article  CAS  Google Scholar 

  15. Japelj B, Vuk AŠ, Orel B, Perše LS, Jerman I, Kovač J (2008) Sol Energy Mater Sol Cells 92:1149–1161

    Article  CAS  Google Scholar 

  16. Orel B, Spreizer H, Perše LS, Fir M, Vuk AŠ, Merlini D, Vodlan M, Köhl M (2007) Sol Energy Mater Sol Cells 91:93–107

    Article  CAS  Google Scholar 

  17. Orel B, Spreizer H, Vuk AŠ, Fir M, Merlini D, Vodlan M, Köhl M (2007) Sol Energy Mater Sol Cells 91:108–119

    Article  CAS  Google Scholar 

  18. Boumaza S, Bouarab R, Trari M, Bouguelia A (2009) Energy Convers Manag 50:62–68

    Article  CAS  Google Scholar 

  19. Kawamoto AM, Pardini LC, Rezende LC (2004) Aerosol Sci Technol 8:591–598

    Article  CAS  Google Scholar 

  20. Pishch IV, Radion EV, Sokolovskaya DM, Popovskaya NF (1996) Glass Ceram 53:211–213

    Article  Google Scholar 

  21. Cui HT, Zayat M, Levy D (2005) J Sol-Gel Sci Technol 35:175–181

    Article  CAS  Google Scholar 

  22. Dupont N, Kaddouri A, Gélin P (2011) J Sol-Gel Sci Technol 58:302–306

    Article  CAS  Google Scholar 

  23. Prasad R (2005) Mater Lett 59:3945–3949

    Article  CAS  Google Scholar 

  24. Delmon B (2007) J Therm Anal Cal 90:49–65

    Article  CAS  Google Scholar 

  25. Karlsson B, Ribbing CG, Roos A, Valkonen E, Karlsson T (1982) Physica Scripta 25:826–831

    Article  CAS  Google Scholar 

  26. Orel ZC, Orel B (1991) Sol Energy Mater 21:267–281

    Article  CAS  Google Scholar 

  27. Woodman TP (1981) US Patent 4277537

  28. Aveline A, Bonilla IR (1981) Sol Energy Mater 5:211–220

    Article  CAS  Google Scholar 

  29. Jain SR, Adiga KC, Pai Verneker VR (1981) Combust Flame 40:71–79

    Article  CAS  Google Scholar 

  30. Hutchins MG (2003) Spectrally selective materials for efficient visible, solar and thermal radiation control. In: Santamouris M (ed) Solar thermal technologies for buildings, James & James, London

  31. Li WD, Li JZ, Guo JK (2003) J Eur Ceram Soc 23:2289–2295

    Article  CAS  Google Scholar 

  32. Takahashi R, Sato S, Sodesawa T, Kawakita M, Ogura K (2000) J Phys Chem 104:12184–12191

    Article  CAS  Google Scholar 

  33. Ponce S, Pena MA, Fierro JLG (2000) Appl Catal B 24:193–205

    Article  CAS  Google Scholar 

  34. Ghosh S, Dasgupta S, Sen A, Maiti HS (2005) J Am Ceram Soc 88:1349–1352

    Article  CAS  Google Scholar 

  35. Liu J, Zhao Z, Xu CM, Duan AJ (2008) Appl Catal B 78:61–72

    Article  CAS  Google Scholar 

  36. Kiminami RHGA (2001) KONA 19:156–165

    CAS  Google Scholar 

  37. Mali A, Ataie A (2005) J Alloys Compd 399:245–250

    Article  CAS  Google Scholar 

  38. Wäckelgård E (1998) Sol Energy Mater Sol Cells 54:171–179

    Article  Google Scholar 

  39. Carlsson B, Möller K, Köhl M, Frei U, Brunold S (2000) Sol Energy Mater Sol Cells 61:255–275

    Article  CAS  Google Scholar 

  40. Jerman I, Koželj M, Orel B (2010) Sol Energy Mater Sol Cells 94:232–245

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the “Western Light” Talents Training Program of CAS, the Solar Action Plan of CAS (Grant 1731012394) and National Natural Science Foundation of China (Grant 51003111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geng, Q., Zhao, X., Gao, X. et al. Low-temperature combustion synthesis of CuCr2O4 spinel powder for spectrally selective paints. J Sol-Gel Sci Technol 61, 281–288 (2012). https://doi.org/10.1007/s10971-011-2625-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2625-2

Keywords

  • CuCr2O4 powder
  • Sol–gel combustion
  • Spectrally selective paint coatings
  • Durability