Skip to main content
Log in

Structure and surface properties of fluorinated organic–inorganic hybrid films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Fluorinated organic–inorganic hybrid films were prepared by sol–gel process from tridecafluoroctyltriethoxysilane (PFAS), 3-glycidoxypropyltrimethoxysilane, and tetraethoxysilane (TEOS). It has been found that the fluorinated hybrid films possessed fluorinated side chains originating from PFAS as top layer, and silica network as bottom layer, which had very low surface energy and could be used as water repellent functional coatings. The outermost layer of the water-repellent film may be fully covered by the perfluoroalkyl side chains as the molar ratio of PFAS/TEOS increases up to about 0.005:1. The addition of BPA can enhance the cross-link density of fluorinated hybrid films, and make more perfluoroalkyl groups enriching at the coating film-air interface to lower the surface free energy. However, the improvement of the cross-link density of fluorinated hybrid films tends to exhibit brittleness and micro-cracks. Consequently, it can be concluded that a small BPA additive content is preferred for the formation of fluorinated hybrid films with a smooth surface and less detectable cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Urushihara Y, Nishino T (2005) Langmuir 21:2614

    Article  CAS  Google Scholar 

  2. Nishino T, Meguro M, Nakamae K et al (1999) Langmuir 15:4321

    Article  CAS  Google Scholar 

  3. Tsibouklis J, Graham P, Eaton PJ et al (2000) Macromolecules 33:8460

    Article  CAS  Google Scholar 

  4. Fujimori A, Araki T, Nakahara H (2002) J Colloid Interface Sci 247:351

    Article  CAS  Google Scholar 

  5. Fujimori A, Araki T, Nakahara H et al (2002) Langmuir 18:1437

    Article  CAS  Google Scholar 

  6. Genzer J, Sivaniah E, Kramer EJ et al (2000) Macromolecules 33:6068

    Article  CAS  Google Scholar 

  7. Genzer J, Sivaniah E, Kramer EJ et al (2000) Langmuir 16:1993

    Article  CAS  Google Scholar 

  8. Genzer J, Sivaniah E, Kramer EJ et al (2000) Macromolecules 33:1882

    Article  CAS  Google Scholar 

  9. Borkar S, Jankova K, Siesler HW et al (2004) Macromolecules 37:788

    Article  CAS  Google Scholar 

  10. Mchugh MA, Domech AG, Park IH et al (2002) Macromolecules 35:6479

    Article  CAS  Google Scholar 

  11. Chang CC, Chen WC (2002) Chem Mater 14:4242

    Article  CAS  Google Scholar 

  12. Furukawa Y, Yoneda T (2003) J Polym Sci Part A: Polym Chem 41:2704

    Article  CAS  Google Scholar 

  13. Perutz S, Wang J, Kramer EJ et al (1998) Macromolecules 31:4272

    Article  CAS  Google Scholar 

  14. Sawada H, Ikeno K, Kawase T (2002) Macromolecules 35:4306

    Article  CAS  Google Scholar 

  15. Sawada H, Tamada D, Kawase T et al (1997) Macromolecules 30:6706

    Article  CAS  Google Scholar 

  16. Park IJ, Lee SB, Choi CK (1998) Macromolecules 31:7555

    Article  CAS  Google Scholar 

  17. Krupers M, Slangen PJ, Möller M (1998) Macromolecules 31:2552

    Article  CAS  Google Scholar 

  18. Park IJ, Lee SB, Choi CK (1997) Polymer 38:2523

    Article  CAS  Google Scholar 

  19. Tsibouklis J, Stone M, Thorpe AA et al (1999) Biomaterials 20:1229

    Article  CAS  Google Scholar 

  20. Ito H, Imae T, Nakamura T et al (2004) J Colloid Interface Sci 276:290

    Article  CAS  Google Scholar 

  21. Imae T, Tabuchi H, Funayama K et al (2000) Colloid Surf A 167:73

    Article  CAS  Google Scholar 

  22. Kim DK, Lee SB, Doh KS (1998) J Colloid Interface Sci 5:417

    Article  Google Scholar 

  23. Kim DK, Lee SB (2002) J Colloid Interface Sci 247:490

    Article  CAS  Google Scholar 

  24. Nakagawa J, Kamogawa K, Momozawa N et al (1998) Langmuir 14:2061

    Article  CAS  Google Scholar 

  25. Nakagawa J, Kamogawa K, Sakai H et al (1998) Langmuir 14:2055

    Article  CAS  Google Scholar 

  26. Qian BT, Shen ZQ (2005) Langmuir 21:9007

    Article  CAS  Google Scholar 

  27. Tadanaga K, Morinaga J, Matsuda A et al (2000) Chem Mater 12:590

    Article  CAS  Google Scholar 

  28. Fabbri P, Messori M, Montecchi M et al (2006) Polymer 47:1055

    Article  CAS  Google Scholar 

  29. Tavandashti NP, Sanjabi S, Shahrabi T (2009) Prog Org Coat 65:182

    Article  Google Scholar 

  30. Wu KH, Chang TC, Yang CC et al (2006) Thin Solid Films 513:84

    Article  CAS  Google Scholar 

  31. Zand RZ, Langroudi AE, Rahimi A (2005) Prog Org Coat 53:286

    Article  Google Scholar 

  32. Jeong HJ, Kim DK, Lee SB et al (2001) J Colloid Interface Sci 235:130

    Article  CAS  Google Scholar 

  33. Tsibouklis J, Stone M, Thorpe AA et al (1999) Langmuir 15:7076

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Natural Science Foundation of Fujian Province of China (Grant No. 2011J01051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjie Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Q., Xu, J. Structure and surface properties of fluorinated organic–inorganic hybrid films. J Sol-Gel Sci Technol 61, 243–248 (2012). https://doi.org/10.1007/s10971-011-2620-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2620-7

Keywords

Navigation