Skip to main content
Log in

Structural, magnetic and dielectric properties of La2NiMnO6 thin film by chemical solution deposition method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Double perovskite La2NiMnO6 thin film was successfully prepared on (001)-oriented 0.7 wt% Nb-doped SrTiO3 single crystal substrate by chemical solution deposition method. The microstructures as well as properties were investigated. The results show that the derived thin film is an admixture of Ni/Mn ordering, and two ferromagnetic transitions are observed with Curie temperatures of 289 and 110 K, respectively. A crossover from positive to negative magnetodielectric effect is observed near room temperature. The success preparation of La2NiMnO6 thin film by chemical solution deposition will provide a useful method to deposit double perovskite multiferroic thin films with low-cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eerenstein W, Mathur ND, Scott JF (2006) Nature 442:759

    Article  CAS  Google Scholar 

  2. Cheong SW, Maxim M (2007) Nat Mater 6:13

    Article  CAS  Google Scholar 

  3. Rogado NS, Li J, Sleight AW, Subramanian MA (2005) Adv Mater 17:2225

    Article  CAS  Google Scholar 

  4. Padhan P, LeClair P, Gupta A, Srinivasan G (2008) J Phys: Condens Matter 20:355003

    Article  Google Scholar 

  5. Mahato RN, Sethupathi K, Sankaranarayanan V (2010) J Appl Phys 107:09D714

    Article  Google Scholar 

  6. Bull CL, Gleeson D, Knight KS (2003) J Phys: Condens Matter 15:4927

    Article  CAS  Google Scholar 

  7. Iliev MN, Guo H, Gupta A (2007) Appl Phys Lett 90:151914

    Article  Google Scholar 

  8. Joseph Joly VL, Joy PA, Date SK (2002) Phys Rev B 65:184416

    Article  Google Scholar 

  9. Truong KD, Singh MP, Jandl S, Fournier P (2009) Phys Rev B 80:134424

    Article  Google Scholar 

  10. Dass RI, Yan JQ, Goodenough JB (2003) Phys Rev B 68:064415

    Article  Google Scholar 

  11. Kitamura M, Ohkubo I, Kubota M, Matsumoto Y, Koinuma H, Oshima M (2009) Appl Phys Lett 94:132506

    Article  Google Scholar 

  12. Padhan P, Guo HZ, LeClair P, Gupta A (2008) Appl Phys Lett 92:022909

    Article  Google Scholar 

  13. Guo H, Burgess J, Street S, Gupta A (2006) Appl Phys Lett 89:022509

    Article  Google Scholar 

  14. Hashisaka M, Kan D, Masuno A, Takano M, Shimakawa Y (2006) Appl Phys Lett 89:032504

    Article  Google Scholar 

  15. Singh MP, Grygiel C, Sheets WC, Boullay PH, Hervieu M, Prellier W, Mercey B, Simon CH, Raveau B (2007) Appl Phys Lett 91:012503

    Article  Google Scholar 

  16. Wang T, Xu W, Fang X, Dong W (2009) J Alloy Compd 475:9

    Article  CAS  Google Scholar 

  17. Robert WS, Theodor S, Rainer W (2004) C R Chimie 7:433

    Article  Google Scholar 

  18. Calzada ML, Algueró M, Ricote J, Santos A, Pardo L (2007) J Sol–Gel Sci Technol 42:331

    Article  CAS  Google Scholar 

  19. Bretos I, Jiménez R, Rodriguez-Castellón E, García-López J, Calzada ML (2008) Chem Mater 20(4):1443

    Article  CAS  Google Scholar 

  20. Theodor S, Rainer W (2007) J Sol–Gel Sci Technol 42:337

    Article  Google Scholar 

  21. Zhao S, Shi L, Zhou S, Yang H, Guo Y (2009) J Appl Phys 106:123901

    Article  Google Scholar 

  22. Guo HZ, Burgess J, Ada E, Street S, Gupta A (2008) Phys Rev B 77:174423

    Article  Google Scholar 

  23. Bull CL, McMillan PF (2004) J Solid State Chem 177:2323

    Article  CAS  Google Scholar 

  24. Kruger R, Schulz B, Naler S, Rauer R, Budelmann D, Backstrom J, Kim KH, Cheong SW, Perebeion V, Rubhausen M (2004) Phys Rev Lett 92:097203

    Article  CAS  Google Scholar 

  25. Iliev MN, Abrashev MV, Litvinchuk AP, Hadjiev VG, Guo H, Gupta A (2007) Phys Rev B 75:104118

    Article  Google Scholar 

  26. Magen C, Algarabel PA, Morellon L, Araújo JP, Ritter C, Ibarra MR, Pereira AM, Sousa B (2006) Phys Rev Lett 96:167201

    Article  CAS  Google Scholar 

  27. Lu CL, Wang KF, Dong S, Wan JG, Liu JM, Ren ZF (2008) J Appl Phys 103:07F714

    Article  Google Scholar 

  28. Guo HZ, Gupta A, Varela M, Pennycook S, Zhang J (2009) Phys Rev B 79:172402

    Article  Google Scholar 

  29. Zhou SM, Shi L, Yang HP, Zhao JY (2007) Appl Phys Lett 91:172505

    Article  Google Scholar 

  30. Lin YQ, Chen XM, Liu XQ (2009) Solid State Commun 149:784

    Article  CAS  Google Scholar 

  31. Lin YQ, Chen XM (2010) Appl Phys Lett 96:142902

    Article  Google Scholar 

  32. Ramesha K, Prakash AS (2009) Mater Sci Eng B 164:24

    Article  Google Scholar 

  33. Lin YQ, Chen XM (2011) J Am Ceram Soc 94(3):782

    Article  CAS  Google Scholar 

  34. Seyam MAM (2001) Appl Surf Sci 181:128

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under contract Nos. 50802096 and 50672099, National Key Basic Research grant under Contract No. 2011CBA00111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebin Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Jian, H., Tang, X. et al. Structural, magnetic and dielectric properties of La2NiMnO6 thin film by chemical solution deposition method. J Sol-Gel Sci Technol 61, 224–228 (2012). https://doi.org/10.1007/s10971-011-2617-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2617-2

Keywords

Navigation