Skip to main content
Log in

Effect of Zr/Ce molar ratio on the structure of powders and Zr1−x Ce x O2 coatings on quartz fiber reinforced polyimide matrix composites via sol–gel process

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this investigation, Zr1−x Ce x O2 coatings were fabricated on quartz fiber reinforced polyimide matrix composites via sol–gel process at 400 °C. The phase evolution, structural and morphological characteristic of specimens were investigated by differential scanning calorimetric, Fourier transform infrared spectroscopy, powder X-ray diffraction and scanning electron microscopy. The significant phase evolution of final powders with the decreasing Zr/Ce molar ratio could be observed as follows: tetragonal (t′) → cubic + tetragonal (t′) → tetragonal (t″). BET specific surface areas of powders exhibited a decreased tendency with the increasing calcination temperature as well as the decreasing Zr/Ce molar ratio. The average crystallite size and the mean particle size increased with the elevated calcination temperature, while the particle size also increased with the increase in Ce content. The progressive addition of Ce could promote the sintering process and the densification of coating. Morphologies of coatings changed with the variation of the Zr/Ce molar ratio. The results indicate that Zr0.75Ce0.25O2 coating with the Zr/Ce molar ratio of 3 is a stable uniform coating with excellent adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ivosevic M, Knight R, Kalidindi SR, Palmese GR, Sutter JK (2006) Surf Coat Technol 200:5145

    Article  CAS  Google Scholar 

  2. Liu A, Guo M, Gao J, Zhao M (2006) Surf Coat Technol 201:2696

    Article  CAS  Google Scholar 

  3. Harding DR, Sutter JK, Schuerman MA, Crane EA (1994) J Mater Res 9:1583

    Article  CAS  Google Scholar 

  4. Gulino DA (1994) NASA cooperative agreement NCC3-194 report, NASA-CR-195904

  5. Li Q, Chen B, Xu S, Gao H, Zhang L, Liu C (2009) J Alloys Comp 478:544

    Article  CAS  Google Scholar 

  6. Domínguez-Crespo MA, García-Murillo A, Torres-Huerta AM, Carrillo-Romo FJ, Onofre-Bustamante E, Yáñez-Zamora C (2009) Electrochim Acta 54:2932

    Article  Google Scholar 

  7. Baron YS, Ruiz A, Navas G (2008) Surf Coat Technol 202:2616

    Article  CAS  Google Scholar 

  8. Taniguchi T, Watanabe T, Matsushita N, Yoshimura M (2009) Eur J Inorg Chem 14:2054

    Article  Google Scholar 

  9. Xu D, Wang Q, Tang Y, Lu Z, Liu Z, Liu S, Zhang G (2002) J Phys Condens Matter 14:11265

    Article  CAS  Google Scholar 

  10. Alifanti M, Baps B, Blangenois N, Naud J, Grange P, Delmon B (2003) Chem Mater 15:395

    Article  CAS  Google Scholar 

  11. Yashima M (2009) J Phys Chem C 113:12658

    Article  CAS  Google Scholar 

  12. Shukla S, Seal S, Vij R, Bandyopadhyay S (2003) Nano Lett 3:397

    Article  CAS  Google Scholar 

  13. Tiwari SK, Adhikary J, Singh TB, Singh R (2009) Thin Solid Films 517:4502

    Article  CAS  Google Scholar 

  14. García J, Quintana P, Aguilar DH, López T, Gómez R (2006) J Sol-Gel Sci Technol 37:185

    Article  Google Scholar 

  15. Raghavan S, Wang H, Porter WD, Dinwiddie RB, Mayo MJ (2001) Acta Mater 49:169

    Article  CAS  Google Scholar 

  16. Zhang YF, Li JY, Li Q, Zhu L, Liu XD, Zhong XH, Meng J, Cao XQ (2007) J Colloid Interface Sci 307:567

    Article  CAS  Google Scholar 

  17. Zhao XB, Chen F, You J, Li XZ, Lu XW, Chen ZG (2010) J Mater Sci 45:3563

    Article  CAS  Google Scholar 

  18. Mudu F, Arstad B, Fjellvåg H, Olsbye U (2011) Catal Lett 141:8

    Article  CAS  Google Scholar 

  19. Rumruangwong M, Wongkasemjit S (2006) Appl Organomet Chem 20:615

    Article  CAS  Google Scholar 

  20. Di Maggio R, Rossi S, Fedrizzi L, Scardi P (1997) Surf Coat Technol 89:292

    Article  CAS  Google Scholar 

  21. Phani AR, Gammel FJ, Hack T, Haefke H (2005) Material Corrosion 56:77

    Article  CAS  Google Scholar 

  22. Liu WM, Chen YX, Ye CF, Zhang PY (2002) Ceram Int 28:349

    Article  Google Scholar 

  23. Harmsworth PD, Stevens R (1991) J Mater Sci 26:3991

    Article  CAS  Google Scholar 

  24. Sodeoka S, Suzuki M, Ueno K, Sakuramoto H, Shibata T, Ando M (1997) J Therm Spray Technol 6:361

    Article  CAS  Google Scholar 

  25. Lee EY, Sohn Y, Jha SK, Holmes JW, Sisson RD Jr (2002) J Am Ceram Soc 85:2065

    Article  CAS  Google Scholar 

  26. Tsipas SA (2010) J Eur Ceram Soc 30:61

    Article  CAS  Google Scholar 

  27. Fang P, Gu H, Wang P, Landuyt JV, Vleugels J, der Biest OV (2005) J Am Ceram Soc 88:1929

    Article  CAS  Google Scholar 

  28. Langjahr PA, Oberacker R, Hoffmann MJ (2001) J Am Ceram Soc 84:1301

    Article  CAS  Google Scholar 

  29. Suresh Kumar K, Mathews T (2005) J Alloys Comp 391:177

    Article  CAS  Google Scholar 

  30. Huang WZ, Yang JL, Meng XS, Cheng YL, Wang CJ, Zou BL, Khan Z, Wang Z, Cao XQ (2011) Chem Eng J 168:1360

    Article  CAS  Google Scholar 

  31. Jin HY, Wang N, Xu L, Hou S (2010) Mater Lett 64:1254

    Article  CAS  Google Scholar 

  32. Juárez RE, Lamas DG, Lascalea GE, Walsöe de Reca NE (2000) J Eur Ceram Soc 20:133

    Article  Google Scholar 

  33. Reddy BM, Reddy GK, Reddy LH, Ganesh I (2009) Open Phys Chem J 3:24

    Article  CAS  Google Scholar 

  34. Yashima M, Arashi H, Kakihana M, Yoshimura M (1994) J Am Ceram Soc 77:1067

    Article  CAS  Google Scholar 

  35. Mizuno M, Sasaki Y, Lee S, Katakura H (2006) Langmuir 22:7137

    Article  CAS  Google Scholar 

  36. Agoudjil N, Kermadi S, Larbot A (2008) Desalination 223:417

    Article  CAS  Google Scholar 

  37. Taniguchi T, Watanabe T, Sakamoto N, Matsushita N, Yoshimura M (2008) Cryst Growth Des 8:3725

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the projects of NSFC-50825204, NSFC-20921002, and NSFC-51173178, National Basic Research Program of China (973 Program) (2010CB631100), State Key Laboratory of Rare Earth Resources Utilization (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences) (RERU2011018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueqiang Cao or Zhen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Wang, C., Yang, J. et al. Effect of Zr/Ce molar ratio on the structure of powders and Zr1−x Ce x O2 coatings on quartz fiber reinforced polyimide matrix composites via sol–gel process. J Sol-Gel Sci Technol 61, 213–223 (2012). https://doi.org/10.1007/s10971-011-2616-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2616-3

Keywords

Navigation