Skip to main content
Log in

Synthesis and characterization of SmAlO3 dielectric material by citrate precursor method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

SmAlO3 nanopowder synthesized by a citrate precursor method using citric acid as a chelating agent and ethylene glycol as an esterifying agent was reported in this paper. The phase purity of the as-prepared powder was examined using thermogravimetry (TG) analysis and differential scanning calorimetry (DSC) analysis, Fourier transform infrared spectroscopy (FTIR). The X-ray diffraction (XRD) studies showed that pure SmAlO3 phase with orthorhombic perovskite structure could be synthesized at 800 °C for 2 h without any detectable intermediate phase. The average particle size calculated from transmission electron microscopy (TEM) investigation for the powder synthesized at 900 °C was as low as 45 nm. The nanopowder was sintered to a density of 97% of the theoretical density at 1,550 °C for 2 h and the bulk ceramics exhibited excellent microwave dielectric properties as follows: a dielectric constant of 20.54, a quality factor of 75,380 GHz and a temperature coefficient of resonate frequency of −69.2 ppm/K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Takahashi H, Baba Y, Ezaki K, Okamoto Y, Shibata K, Kuroki K, Nakano S (1991) Jpn J Appl Phys 30:2339–2342

    Article  CAS  Google Scholar 

  2. Matsumoto H, Tamura H, Wakino K, Okamoto Y, Shibata K, Kuroki K, Nakano S (1991) Jpn J Appl Phys 30:2347–2349

    Article  CAS  Google Scholar 

  3. Cho SY, Kim IT, Hong KS (1999) J Mater Res 14:114–119

    Article  CAS  Google Scholar 

  4. Khalam LA, Sebastian MT (2007) J Am Ceram Soc 90:1467–1474

    Article  Google Scholar 

  5. Fu MS, Liu XQ, Chen XM (2008) J Eur Ceram Soc 28:585–590

    Article  CAS  Google Scholar 

  6. Behera SK, Sahu PK, Pratihar SK, Bhattacharyya S (2004) Mater Lett 58:3710–3715

    Article  CAS  Google Scholar 

  7. Vasylechko L, Senyshyn A, Bismayer U (2009) In: Gschneidner KA, Bünzli JCG, Pecharsky VK (eds) Handbook on the physics and chemistry of rare earths, 1st edn. Elsevier, North Holland

  8. Huang CL, Chen YC (2002) Mater Res Bull 37:563–574

    Article  CAS  Google Scholar 

  9. Suvorov D, Valant M, Jancar B, Skapin S (2001) Acta Chim Slov 48:87–99

    CAS  Google Scholar 

  10. Jancar B, Suvorov D, Valant M (2002) Key Eng Mat 206–213:1289–1292

    Article  Google Scholar 

  11. Vidyasagar K, Gopalkrishnan J, Rao CNR (1985) J Solid State Chem 58:29–37

    Article  CAS  Google Scholar 

  12. Gersten BL, Lencka MM, Riman RE (2004) J Am Ceram Soc 87:2025–2032

    Article  CAS  Google Scholar 

  13. Xu P, Han XJ, Wang MJ (2007) J Phys Chem C 111:5866–5870

    Article  CAS  Google Scholar 

  14. Douy A, Capron M (2003) J Eur Ceram Soc 23:2075–2081

    Article  CAS  Google Scholar 

  15. Ries A, Simões AZ, Cilense M, Zaghete MA, Varela JA (2003) Mater Charact 50:217–221

    Google Scholar 

  16. Xu YB, Yuan X, Huang GH, Long H (2005) Mater Chem Phys 90:333–338

    Article  CAS  Google Scholar 

  17. Mao CL, Dong XL, Zeng T, Wang GS, Chen S (2007) Mater Res Bull 42:1602–1610

    Article  CAS  Google Scholar 

  18. Chivalrat M, Prasit T, Santi M, Teerapon Y, Supapan S (2008) Mater Chem Phys 109:262–270

    Article  Google Scholar 

  19. Lee BI, Gupta RK, Whang CM (2008) Mater Res Bull 43:207–221

    Article  CAS  Google Scholar 

  20. Li JM, Qiu T (2011) Appl Phys A 104:465–469

    Article  CAS  Google Scholar 

  21. Hakki BW, Coleman PD (1960) IEEE Trans Microw Theory Tech MTT 8:402–410

    Google Scholar 

  22. Courtney WE (1970) IEEE Trans Microw Theory Tech MTT 18:476–485

    Google Scholar 

  23. Zhang JR, Gao L (2004) Mater Lett 58:2730–2734

    Article  CAS  Google Scholar 

  24. Cho SG, Johnson PF, Condrate RA (1990) J Mater Sci 25:4738–4744

    Article  CAS  Google Scholar 

  25. Rajendran M, Rao MS (1994) J Solid State Chem 113:239–247

    Article  CAS  Google Scholar 

  26. Matsuura H, Miyazawa T (1967) Bull Chem Soc Jpn 40:85–94

    Article  CAS  Google Scholar 

  27. Couzi M, Huong PV (1972) J Chem Phys Physico-Chim Biol 69:1339–1347

    CAS  Google Scholar 

  28. Kim ES, Chun BS, Kang DH (2007) J Eur Ceram Soc 27:3005–3010

    Article  CAS  Google Scholar 

  29. Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Englewood Cliffs, Prentice Hall

    Google Scholar 

  30. Lessing PA (1989) Am Ceram Soc Bull 68:1002–1007

    CAS  Google Scholar 

  31. Tai LW, Lessing PA (1992) J Mater Res 7:502–519

    Article  CAS  Google Scholar 

  32. Lu HC, Burkhart LE, Schrader G (1991) J Am Ceram Soc 74:968–972

    Article  CAS  Google Scholar 

  33. Choy JH, Han YS, Sohn JH, Itoh M (1995) J Am Ceram Soc 78:1169–1172

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Qiu, T. Synthesis and characterization of SmAlO3 dielectric material by citrate precursor method. J Sol-Gel Sci Technol 61, 112–118 (2012). https://doi.org/10.1007/s10971-011-2598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2598-1

Keywords

Navigation