Skip to main content
Log in

Catalytic activity and stability of laccase entrapped in sol–gel silica with additives

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This study investigated the effects of different additives and precursors on the catalytic activity of laccase entrapped in sol–gel silica. It was found that the laccase catalytic activity and stability of sol–gel laccase could be enhanced if the entrapment was performed in the presence of additives such as PVA, PEG and APTS. The use of TEOS as a precursor showed slightly higher laccase catalytic activity compared to TMOS. The PVA as an additive showed a better catalytic activity enhancement compared to the PEG and APTMS with the optimum PVA concentration of 0.03 mg/mL. The optimal temperatures of sol–gel laccase without and with additives were found to be at 40 and 27°C, respectively. After 70 days of storage at 27°C, the catalytic activity of the immobilized sol–gel laccase with additives maintained its catalytic activity compared to only 30% of its original catalytic activity for the sol–gel laccase without additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Quan D, Shin W (2004) Mater Sci Eng A 24:113–115

    Article  Google Scholar 

  2. Nogala W, Rozniecka E, Zawista I, Rogalski J, Opallo M (2006) Electrochem Commun 8:1850–1854

    Article  CAS  Google Scholar 

  3. Moldes D, Cadena EM, Vidal T (2010) Bioresource Technol 101:6924–6929

    Article  CAS  Google Scholar 

  4. Mayer AM, Staples RC (2002) Phytochemistry 60:551–565

    Article  CAS  Google Scholar 

  5. Riva S (2006) Trends Biotechnol 24:219–226

    Article  CAS  Google Scholar 

  6. Iyer PV, Ananthanarayan L (2008) Process Biochem 43:1019–1932

    Article  CAS  Google Scholar 

  7. Vandertol-Vanier HA, Vazquez-Duhalt R, Tinoca R, Pickard MA (2002) J Ind Microbiol Biotechnol 25:214–220

    Article  Google Scholar 

  8. Schroeder M, Heumann S, Silva CJSM, Cavaco-Paulo A, Guebitz GM (2006) Biotechnol Lett 27:1573–6773

    Google Scholar 

  9. Jolivalt C, Brevon S, Caminade E, Mougan C, Pontie M (2000) J Membr Sci 180:103–113

    Article  CAS  Google Scholar 

  10. Davis S, Burns RG (1992) Appl Microbial Technol 37:474–479

    CAS  Google Scholar 

  11. Chen JP, Lin WS (2003) Enzyme Microb Technol 32:801–811

    Article  CAS  Google Scholar 

  12. Fu D, Li C, Lu J, Rahman A, Tan T (2010) J Mol Catal B Enzymatic 66:136–141

    Article  CAS  Google Scholar 

  13. Mori S, Yumoto H, Matsumi R, Nishigaki T, Ebara Y, Ueji S (2005) Tetrahedron 16:3698–3702

    Article  CAS  Google Scholar 

  14. Theil F (2000) Tetrahedron 56:2905–2919

    Article  CAS  Google Scholar 

  15. Kristensen JB, Borhesson J, Bruun MH, Tjerneld F, Jfrgensen H (2007) Enzyme Microb Technol 40:888–895

    Article  CAS  Google Scholar 

  16. Ghanem A, Schurig V (2001) Tetrahedron 12:2761–2766

    Article  CAS  Google Scholar 

  17. Noel M, Combes D (2003) Enzyme Microb Technol 33:299–308

    Article  CAS  Google Scholar 

  18. Yasuda M, Kiguchi T, Kasahara H, Ogino H, Ishikawa H (2000) J Biosci Bioeng 90:681–683

    CAS  Google Scholar 

  19. Salgin S, Taka S (2007) Chem Eng Technol 30:1739–1743

    Article  CAS  Google Scholar 

  20. Aimee W, Alloue M, Destrain J, Amighi K, Thonart P (2007) Process Biochem 42:1357–1361

    Article  Google Scholar 

  21. Ammazzalorso A, Amoroso R, Bettoni G, Filippis BD, Fantacuzzi M, Giampoetro L, Maccallini C, Tricca ML (2008) Chirality 20:115–118

    Article  CAS  Google Scholar 

  22. Jin W, Brennan JD (2002) Anal Chim Acta 461:1–36

    Article  CAS  Google Scholar 

  23. Dong H, Xu J, Qiu KY, Jansen SA, Wei Y (2000) Polym Prepr 41:194–195

    CAS  Google Scholar 

  24. Brennan JD, Benjamin D, DiBattista E, Gulcev MD (2003) Chem Mater 15:737–745

    Article  CAS  Google Scholar 

  25. Keeling-Tucker T, Rakic M, Spong C, Brennan JD (2000) Chem Mater 12:3695–3704

    Article  CAS  Google Scholar 

  26. Yi Y, Neufeld R, Kermasha S (2007) Sol–Gel Sci Technol 43:161–170

    Article  CAS  Google Scholar 

  27. Lee SH, Doan TTN, Ha SH, Chang W-J, Koo Y-M (2007) J Mol Catal B Enzymatic 47:129–134

    Article  CAS  Google Scholar 

  28. Mohidem NA, Mat HB (2009) J Appl Sci 9:3141–3145

    Article  CAS  Google Scholar 

  29. Vera-Avila LE, Morales-Zamudio E, Garcia-Camacho MK (2004) Sol–Gel Sci Technol 30:197–204

    Article  CAS  Google Scholar 

  30. Leoniwicz A, Sarkar JM, Bollag JM (1998) J Chem Technol Biotechnol 29:129–135

    Google Scholar 

  31. Bhatia RB, Brinker J (2000) Chem Mater 12:2434–2441

    Article  CAS  Google Scholar 

  32. Zeigler JM, Gordon Fearon FW (1990) Silicon-based polymer science: a comprehensive resource. American Chemical Society, Sandia National Laboratories, Albuquerque

    Google Scholar 

  33. Reetz MT, Zonta A, Simpelkamp J, Rufinska A, Tesche B (1996) J Sol–Gel Sci Technol 7:35–43

    Article  CAS  Google Scholar 

  34. Rocha JMS, Gil MH, Garcia FAP (1998) J Biotechnol 66:61–67

    Article  CAS  Google Scholar 

  35. Wehtje E, Adlercreutz P, Mattiasson B (1993) Biotechnol Bioeng 41:171–178

    Article  CAS  Google Scholar 

  36. Koncova G, Szilva J, Hetflejs J, Sabata S (2003) Sol–Gel Sci Technol 26:1183–1187

    Article  Google Scholar 

  37. Qu Y, Bolen CL, Bolen DW (1998) Proc Natl Acad Sci USA 95:9268–9273

    Article  CAS  Google Scholar 

  38. Anjum F, Rishi V, Ahamd F (2000) Biochim Biophys Acta 1476:75–84

    Article  CAS  Google Scholar 

  39. Fagain CO (2003) Enzyme Microb Technol 33:137–149

    Article  Google Scholar 

  40. Wallace LA, Burke J, Dirr HW (2000) Biochim Biophys Acta 1478:325–332

    Article  CAS  Google Scholar 

  41. Calabro DC, Valyocsik EW, Ryan FX (1996) Microporous Mater 7:243–259

    Article  CAS  Google Scholar 

  42. Maryne AF, James KW (2004) Organic chemistry. Jones and Bratlett Publishers, Sudbury

    Google Scholar 

  43. Vonhoff S, Condliffe J, Schiffter H (2010) J Pharm Biomed Anal 51:39–45

    Article  CAS  Google Scholar 

  44. Anbia M, Lashgari M (2009) Chem Eng J 150:555–560

    Article  CAS  Google Scholar 

  45. Dong A, Prestrelski SJ (1995) J Pharm Sci 84:415–424

    Article  CAS  Google Scholar 

  46. Byler DM, Susi H (1986) Biopolymers 25:469–487

    Article  CAS  Google Scholar 

  47. Shuler ML, Kargi F (2005) Bioprocess engineering. Prentice Hall, New York

    Google Scholar 

  48. Creighton TE (1996) Proteins structure and molecular properties. WH Freeman and Company, New York

    Google Scholar 

  49. Makas GY, Kalkan AN, Aksoya S, Altinokb H, Hasircic N (2010) J Biotechnol 148:216–220

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Ministry of Higher Education (MOHE), Malaysia, under the Fundamental Research Grant Scheme (FRGS Project No. 78213). The assistance given by Mrs. Siti Zalita in the analytical work is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanapi Bin Mat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohidem, N.A., Bin Mat, H. Catalytic activity and stability of laccase entrapped in sol–gel silica with additives. J Sol-Gel Sci Technol 61, 96–103 (2012). https://doi.org/10.1007/s10971-011-2596-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2596-3

Keywords

Navigation