Skip to main content
Log in

Preparation of highly stable TiO2 sols and nanocrystalline TiO2 films via a low temperature sol–gel route

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Highly stable TiO2 sols were prepared by adjusting the water-to-titanium molar ratio to ~4 in the process of hydrolysis and condensation of titanium isopropoxide in ethanol with HNO3. Particularly, long-term stable TiO2 sols were prepared without adding any chemical additives. Anatase TiO2 nanocrystallites with sizes of 3–5 nm in diameter were uniformly dispersed in the stable sol. Crystallized TiO2 films were successfully deposited on Si (100) using the stable sol via a dip-coating process with low temperature curing at as low as 100 °C. The synthesized TiO2 sols and films are promising for use in flexible or dye-sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cong Y, Zhang J, Chen F, Anpo M, He D (2007) J Phys Chem C 111:10618–10623

    Article  CAS  Google Scholar 

  2. Wold A (1993) Chem Mater 5:280–283

    Article  CAS  Google Scholar 

  3. Zallen R, Moret MP (2006) Solid State Commun 137:154–157

    Article  CAS  Google Scholar 

  4. Leinen D, Fernandez A, Espinos JP, Belderrain TR, Gonzalez-Elipe AR (1994) Thin Solid Films 241:198–201

    Article  CAS  Google Scholar 

  5. Stamate MD (2000) Thin Solid Films 372:246–249

    Article  CAS  Google Scholar 

  6. Lee HY, Park YH, Ko KH (2000) Langmuir 16:7289–7293

    Article  CAS  Google Scholar 

  7. Garapon C, Champeaux C, Mugnier J, Panczer G, Marchet P, Catherinot A, Jacquier B (1996) Appl Surf Sci 96–98:836–841

    Article  Google Scholar 

  8. Choi Y, Yamamoto S, Umebayashi T, Yoshikawa M (2004) Solid State Ion 172:105–108

    Article  CAS  Google Scholar 

  9. Gyorgy E, Socol G, Axente E, Mihailescu IN, Ducu C, Ciuca S (2005) Appl Surf Sci 247:429–433

    Article  Google Scholar 

  10. Tan W, Chen J, Zhou X, Zhang J, Lin Y, Li X, Xiao X (2009) J Solid State Electrochem 13:651–656

    Article  CAS  Google Scholar 

  11. Hu Y, Yuan C (2005) J Cryst Growth 274:563–568

    Article  CAS  Google Scholar 

  12. Ge L, Xu M, Sun M, Fang H (2006) J Sol-Gel Sci Technol 38:47–49

    Article  CAS  Google Scholar 

  13. Jiang K, Zakutayev A, Stowers J, Anderson MD, Tate J, McIntyre DH, Johnson DC, Keszler DA (2009) Solid State Sci 11:1692–1699

    Article  CAS  Google Scholar 

  14. Djaoued Y, Badilescu S, Ashrit PV, Bersani D, Lottici PP, Bruning R (2002) J Sol-Gel Sci Technol 24:247–254

    Article  CAS  Google Scholar 

  15. Ahn YU, Kim EJ, Kim HT, Hahn SH (2003) Mater Lett 57:4660–4666

    Article  CAS  Google Scholar 

  16. Gao Y, Masuda Y, Peng Z, Yonezawa T, Koumoto K (2003) J Mater Chem 13:608–613

    Article  CAS  Google Scholar 

  17. Cannon AS, Morelli A, Pressler W, Warner JC, Guarrera D (2005) J Sol-Gel Sci Technol 36:157–162

    Article  CAS  Google Scholar 

  18. Yuan Z, Li B, Zhang J, Xu C, Ke J (2006) J Sol-Gel Sci Technol 39:249–253

    Article  CAS  Google Scholar 

  19. Ding X-Z, Qi Z-Z, He Y-Z (1995) J Mater Sci Lett 14:21–22

    Article  CAS  Google Scholar 

  20. Vorkapic D, Matsoukas T (1998) J Am Ceram Soc 81:2815–2820

    Article  CAS  Google Scholar 

  21. Harizanov O, Harizanova A (2000) Sol Energy Mater Sol Cells 63:185–195

    Article  CAS  Google Scholar 

  22. Guo B, Liu Z, Hong L, Jiang H, Lee JY (2005) Thin Solid Films 479:310–315

    Article  CAS  Google Scholar 

  23. Kajitvichyanukul P, Amornchat P (2005) Sci Technol Adv Mater 6:344–347

    Article  CAS  Google Scholar 

  24. Venkatachalam N, Palanichamy M, Murugesan V (2007) Mater Chem Phys 104:454–459

    Article  CAS  Google Scholar 

  25. Kumar KNP, Kumar J, Keizer K (1994) J Am Ceram Soc 77:1396–1400

    Article  CAS  Google Scholar 

  26. Pottier A, Cassaignon S, Chaneac C, Villain F, Tronc E, Jolivet JP (2003) J Mater Chem 13:877–882

    Article  CAS  Google Scholar 

  27. Ryu DH, Kim SC, Koo SM, Kim DP (2003) J Sol-Gel Sci Technol 26:489–493

    Article  CAS  Google Scholar 

  28. Juengsuwattananon K, Jaroenworaluck A, Panyathanmaporn T, Jinawath S, Supothina S (2007) Phys Stat Sol 6:1751–1756

    Article  Google Scholar 

  29. Zhang R, Gao L (2001) Mater Res Bull 36:1957–1965

    Article  Google Scholar 

  30. Einstein A (1906) Ann Phys 19:289–306

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Fundamental R&D Program for the Core Technology of Materials, which was funded by the Ministry of Knowledge Economy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taejin Hwang or Sang Sub Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katoch, A., Kim, H., Hwang, T. et al. Preparation of highly stable TiO2 sols and nanocrystalline TiO2 films via a low temperature sol–gel route. J Sol-Gel Sci Technol 61, 77–82 (2012). https://doi.org/10.1007/s10971-011-2593-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2593-6

Keywords

Navigation