Skip to main content
Log in

Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A comparison of the band gap energy estimated from UV–vis reflectance spectra of TiO2 powders prepared by sol–gel route versus commercial TiO2 powders, nanopowder, bulkpowder and P25 is reported. The experimental results obtained from the optical absorption spectra were reported for all the TiO2 samples. Graphic representations were used to calculate Eg: absorbance versus λ; F(R) versus E; (F(R) )n versus E, with n = ½ for an indirect allowed transition and n = 2 for a direct allowed transition. From the results, it could be seen that Eg strongly varied according to the equation used for the graphic representation. Differences in Eg up to 0.5 eV for the same semiconductor depending on the transition chosen were observed. Accurate Eg estimation in the four semiconductors studied was obtained by using the general equation α () ≈ B ( − Eg)n (where α ~ F(R)) and indirect allowed transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Galindo F, Gómez R (2009) J Nano Res 5:87

    Article  Google Scholar 

  2. Galindo F, Gómez R, Del Ángel G, Guzmán C (2008) J Ceram Process Res 9:616

    Google Scholar 

  3. López R, Gómez R, Llanos ME (2009) Catal Today 148:103

    Article  Google Scholar 

  4. Daude N, Gout C, Jouanin C (1977) Phys Rev B 15:3229

    Article  CAS  Google Scholar 

  5. Serpone N, Lawless D, Khairutdinov R (1995) J Phys Chem 99:16646

    Article  CAS  Google Scholar 

  6. Qiang C, Hong–Hong C (2004) Chin Phys Soc 13:2121

    Article  Google Scholar 

  7. Sze SM, Kwok K (2007) Physics of semiconductor devices, 3rd edn. Wiley, London

    Google Scholar 

  8. Marshall ED, Murakami M (1993) In: Brillson LJ (ed) Contacts to semiconductors: fundamentals and technology. Noyes publications, New Jersey

    Google Scholar 

  9. Schiavello M (1998) Heterogeneous photocatalysis. Wiley series in photoscience and photoengineering, New York

  10. Tandon SP, Gupta JP (1970) Phys Stat Sol 38:363

    Article  CAS  Google Scholar 

  11. Fosch PD (1956) Proc Phys Soc B 69:70

    Google Scholar 

  12. Shapiro IP (1958) Opt Spektrosk 4:256

    CAS  Google Scholar 

  13. Lewis NS, Rosenbluth ML (1989) In: Serpone N, Pelizzetti E (eds) Photocatalysis: fundamentals and applications. Wiley-Interscience, London

    Google Scholar 

  14. Pankove JI (1975) Optical processes in semiconductors. Dover, New York

    Google Scholar 

  15. Candal RJ, Bilmes SA, Blesa MA (2001) Eliminación de contaminantes por Fotocatálisis Heterogénea, Texto colectivo elaborado por la Red CYTED VIII-G, Madrid

  16. Lynch DW (1998) In: Palik ED (ed) Handbook of optical constants of solids, vol 1. Academic Press, London, p 197

    Google Scholar 

  17. Apell P, Hunderi O (1998) In: Palik ED (ed) Handbook of optical constants of solids, vol 2. Academic Press, London, p 111

    Google Scholar 

  18. Forouhi AR, Bloomer I (1998) In: Palik ED (ed) Handbook of optical constants of solids, vol 2. Academic Press, London, p 163

    Google Scholar 

  19. Gray JL (2003) In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering. Wiley, London

    Google Scholar 

  20. Amirtharaj PM, Seiler DG (1995) In: Bass M (ed) Handbook of optics, volume ii—devices, measurements, and properties. McGraw-Hill, New York

    Google Scholar 

  21. Miller A (1995) In: Bass M (ed) Handbook of optics, volume i—fundamentals, techniques and design. McGraw-Hill, New York

    Google Scholar 

  22. Kubelka P, Munk F (1931) Z Tech Phys 12:593

    Google Scholar 

  23. Kubelka P (1948) J Opt Soc Am 38:448

    Article  CAS  Google Scholar 

  24. Murphy AB (2007) Sol Energy Mater Sol Cells 91:1326

    Article  CAS  Google Scholar 

  25. Yang L, Kruse B (2004) J Opt Soc Am A 21:1933

    Article  Google Scholar 

  26. Yang L, Kruse B, Miklavcic SJ (2004) J Opt Soc Am A 21:1942

    Article  Google Scholar 

  27. Yang L, Miklavcic SJ (2005) J Opt Soc Am A 22:1866

    Article  Google Scholar 

  28. Kokhanovsky AA (2007) J Phys D Appl Phys 40:2210

    Article  CAS  Google Scholar 

  29. Edström P (2007) J Opt Soc Am A 24:548

    Article  Google Scholar 

  30. Yang L, Miklavcic SJ, Kruse B (2007) J Opt Soc Am A 24:557

    Article  Google Scholar 

  31. Khan SUM, Al-Shahry M, Ingler WB (2002) Science 297:2243

    Article  CAS  Google Scholar 

  32. Yang J, Bai H, Tan X, Lian J (2006) Appl Surf Sci 253:1988

    Article  CAS  Google Scholar 

  33. He C, Li XZ, Graham N, Wang Y (2006) Appl Catal A 305:54

    Article  CAS  Google Scholar 

  34. Graf C, Ohser-Wiedemann R, Kreisel G (2007) J Photochem Photobiol A 188:226

    Article  CAS  Google Scholar 

  35. Gómez R, López T, Ortiz-Islas E, Navarrete J, Sánchez E, Tzompanztzi F, Bokhimi X (2003) J Mol Catal A Chem 193:217

    Article  Google Scholar 

  36. López T, Hernandez-Ventura J, Gómez R, Tzompantzi F, Sánchez E, Bokhimi X, García A (2001) J Mol Catal A Chem 167:101

    Article  Google Scholar 

  37. Tang H, Prasad K, Sanjines R, Schmid PE, Lévy F (1994) J Appl Phys 75:2042

    Article  CAS  Google Scholar 

  38. Fan X, Yu T, Zhang L, Chen X, Zou Z (2007) J Chem Phys 20:733

    CAS  Google Scholar 

  39. Sudhagar P, Sathyamoorthy R, Chandramohan S (2008) Appl Surf Sci 254:1919

    Article  CAS  Google Scholar 

  40. Chung J, Chen J, Tseng C (2008) J Phys Chem Solids 69:535

    Article  CAS  Google Scholar 

  41. Akl AA, Kamal H, Abdel-Hady K (2006) Appl Surf Sci 252:8651

    Article  CAS  Google Scholar 

  42. Reddy KM, Manorama SV, Reddy AR (2002) Mater Chem Phys 78:239

    Article  Google Scholar 

  43. Kumar P, Malhotra LK (2004) Electrochim Acta 49:3355

    Article  CAS  Google Scholar 

  44. Lekha PC, Subramanian E, Padiyan DP (2007) Sens Actuators B 122:274

    Article  Google Scholar 

  45. Herman D, Sicha J, Musil J (2006) Vacuum 81:285

    Article  CAS  Google Scholar 

  46. Simpson JR, Drew HD (2004) Phys Rev B 69:193205

    Article  Google Scholar 

  47. Miao L, Jin P, Kaneko K, Terai A, Nabatova-Gabain N, Tanemura S (2003) Appl Surf Sci 212:255

    Article  Google Scholar 

  48. Beke S, Giorgio S, Kőrösi L, Nánai L, Marine W (2007) Thin Solid Films 516:4659

    Article  Google Scholar 

  49. Yeredla RR, Xu H (2008) Nanotechnology 19:055706

    Article  Google Scholar 

  50. Lin H, Huang CP, Li W, Ni C, Ismat Shah S, Tseng Y (2006) Appl Catal B 68:1

    Article  CAS  Google Scholar 

  51. Aguado J, Van Grieten R, López MJ, Marugán J (2006) Appl Catal A 312:202

    Article  CAS  Google Scholar 

  52. Tauc J, Grigorovici R, Vancu A (1966) Phys Stat Sol 15:627

    Article  CAS  Google Scholar 

  53. Sakthivel S, Hidalgo MC, Bahnemann DW, Geissen SU, Murugesan V, Vogelpohl A (2006) Appl Catal B 63:31

    Article  CAS  Google Scholar 

  54. Yu X, Shenhua X, Zhaoyuan N, Jun C, Xinhua L, Suliu X, Song H, Wei D, Shanhua C (2004) Plasma Sci Technol 6:2337

    Article  Google Scholar 

  55. Yamaguchi M, Ogihara C, Morigaki K (2003) Mater Sci Eng B 97:135

    Article  Google Scholar 

  56. Sinha D, Phukan T, Tripathy SP, Mishra R, Dwivedi KK (2001) Radiat Meas 34:109

    Article  CAS  Google Scholar 

  57. Miao B, Hong J, Chen P, Yuan X, Han M, Wang G (1997) J Phys Condens Matter 9:10985

    Article  CAS  Google Scholar 

  58. Zhou W, Xie S, Qian S, Wang G, Qian L, Sun L, Tang D, Liu Z (2000) J Phys Chem Solids 61:1165

    Article  CAS  Google Scholar 

  59. Lee S, Shin DW, Kim WM, Cheong B, Lee T, Lee KS, Cho S (2006) Thin Solid Films 514:296

    Article  CAS  Google Scholar 

  60. Chatterjee S (2008) J Phys D Appl Phys 41:055301

    Article  Google Scholar 

  61. Stengl V, Bakardjieva S, Murafa N, Houskova V, Lang K (2008) Micropor Mesopor Mater 110:370

    Article  CAS  Google Scholar 

  62. Ryu SY, Balcerski W, Lee TK, Hoffmann MR (2007) J Phys Chem C 111:18195

    Article  CAS  Google Scholar 

  63. Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM (2007) Chem Mater 19:3740

    Article  CAS  Google Scholar 

  64. Li Q, Xie R, Li YW, Mintz EA, Shang JK (2007) Environ Sci Technol 41:5050

    Article  CAS  Google Scholar 

  65. Miao L, Tanemura S, Watanabe H, Mori Y, Kaneko K, Toh S (2004) J Cryst Growth 260:118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank to CONACYT for the CB-2006-1-62053 grant relative to: “Preparation of semiconductors by the sol–gel method”. R. López acknowledges to CONACYT fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, R., Gómez, R. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61, 1–7 (2012). https://doi.org/10.1007/s10971-011-2582-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2582-9

Keywords

Navigation