Skip to main content
Log in

Sol–gel derived silica-based organic–inorganic hybrid materials as “composite precursors” for the synthesis of highly homogeneous nanostructured mixed oxides: an overview

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The present contribution reports on our results concerning the synthesis of different binary and ternary oxide systems by using hybrid materials as “composite” precursors. In the last years, we have developed and explored a valuable strategy to yield a very homogeneous dispersion of nanoparticles of early metal transition oxide, MO2 (M = Zr, Hf) inside a silica matrix. This route is based on the use of the sol–gel process to obtain organic–inorganic hybrid silica-based materials embedding the oxide precursors (Zr and/or Hf oxoclusters), which are then calcined at high (T > 500 °C) temperatures to give the desired oxides. The “precursor” hybrid materials are prepared by a modified sol–gel process, involving the copolymerisation of the organically modified oxozirconium or oxohafnium clusters (M4O2(OMc)12 (M = Zr, Hf and OMc = methacrylate) with (methacryloxymethyl)triethoxysilane (MAMTES) or (methacryloxypropyl)trimethoxysilane (MAPTMS). Free radical copolymerisation of the 12 methacrylate groups of the oxoclusters with the methacrylate-functionalised siloxanes allows a stable anchoring of the oxoclusters to the silica network formed by the hydrolysis and condensation of the alkoxy groups. The sol–gel reactions of the two methacrylate-modified silanes methacryloxymethyltriethoxysilane and methacryloxypropyltrimethoxysilane were followed by using two independent time-resolved spectroscopic methods, viz., IR ATR and NMR with the aim to optimise their pre-hydrolysis times and consequently their use as precursors for hybrid materials. As mentioned, thermal treatment at high temperature of the hybrid yields a very homogeneous dispersion of ZrO2 and/or HfO2 nanoparticles in the silica matrix, since the molecular homogeneity of the starting hybrid is retained in the final mixed oxide. This route was successfully applied both to the synthesis of bulk materials and thin films characterised by different compositions (in term of M/Si molar ratios and M nature), heating route (conventional or microwave-assisted) and final temperature of annealing (from RT to 1,100 °C). The first example of the ZrO2–HfO2–SiO2 ternary oxide system was also prepared by this approach. The prepared systems, both in the form of hybrid materials as well as in the final form of binary or ternary oxides, were thoroughly characterised by a wide variety of analytical tools from a compositional, structural, morphological point of view. Moreover, in the case of the binary ZrO2–SiO2 bulk materials, also the evolution under heating was followed by different methods. In particular, the composition of the hybrid as well as of the final oxidic materials was determined by X-Ray Photoelectron Spectroscopy and elemental analysis, whereas FT-IR and multinuclear solid-state NMR spectroscopies shed light on the changes occurring in the composition upon thermal heating and the degree of condensation of the silica network. The morphology and the microstructure of the hybrids and of the oxides were studied by nitrogen sorption and Scanning Electron Microscopy. X-Ray Diffraction, Transmission Electron Microscopy and X-ray Absorption Fine Structure Spectroscopy X-ray Absorption Fine Structure Spectroscopy were used to follow the conversion of the amorphous oxides to the final materials consisting of crystalline zirconia or hafnia dispersed in amorphous silica. On selected systems, functional properties (surface reactivity, dielectric properties) were furthermore investigated. The obtained binary oxides were also used as substrates for functionalisation experiments with (1) dialkycarbamates and (2) long alkyl chains to produce functional materials for catalysis and HPLC applications, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

ATR:

Attenuated total reflection

BDS:

Broadband dielectric spectroscopy

DRIFT:

Diffuse reflectance infrared fourier transform spectroscopy

EA:

Elemental analysis

EDX:

Energy-dispersive X-ray

FT-IR:

Fourier transform infrared spectroscopy

LA-ICP-MS:

Laser ablation inductively coupled plasma mass spectrometry

NBB:

Nano building block

SEM:

Scanning electron microscopy

SIMS:

Secondary ion mass spectrometry

XAFS:

X-ray absorption fine structure spectroscopy

XPS:

X-Ray photoelectron spectroscopy

XRD:

X-Ray diffraction

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

References

  1. Cox PA (1995) Transition metal oxides: introduction to their electronic structure and properties. Oxford University Press, Oxford

    Google Scholar 

  2. Kung HH (1989) Transition metal oxides: surface chemistry and catalysis. Elsevier, Amsterdam

    Google Scholar 

  3. Rao CNR, Raveau B (2009) Transition metal oxides: structure, properties and synthesis of ceramic oxides. Wiley VCH, Weinheim

    Google Scholar 

  4. Raveau B (2005) J Eur Ceram Soc 25:1965–1969

    Article  CAS  Google Scholar 

  5. Fernandez-Garcia M, Martinez-Arias A, Hanson JC, Rodriguez JA (2004) Chem Rev 104:4063–4104

    Article  CAS  Google Scholar 

  6. (2007) Special Issue Mater Today 10

  7. Zakrzewska K (2001) Thin Solid Films 391:229–238

    Article  CAS  Google Scholar 

  8. Cousin P, Ross RA (1990) Mater Sci Eng A Struct 130:119–125

    Article  Google Scholar 

  9. Lincot D (2010) MRS Bull 35:778–789

    Article  CAS  Google Scholar 

  10. Hodes G (2007) Phys Chem Phys 9:181–196

    Article  Google Scholar 

  11. Brinker CJ, Scherer GW (1990) Sol–gel science—the physis and chemistry of sol–gel processing. Academic Press, New York

    Google Scholar 

  12. Frenzer G, Maier WF (2006) Annu Rev Mater Res 36:281–331

    Article  CAS  Google Scholar 

  13. Mentruit MP, Palomino GT, Arean CO (2001) Trends Inorg Chem 7:1–14

    CAS  Google Scholar 

  14. Bradley DC, Gaur DP, Mehrotra RC (1978) Metal Alkoxides. Academic Press, New York

  15. Mountjoy G, Holland MA, Gunawidjaja P, Wallidge GW, Pickup DM, Newport RJ, Smith ME (2003) J Sol–Gel Sci Technol 26:161, and references therein

  16. Itoh M, Hattori H, Tanabe KJ (1974) J Catal 35:225

    Article  CAS  Google Scholar 

  17. Miller JB, Ko EI (1996) J Catal 159:58

    Article  CAS  Google Scholar 

  18. Bosman HJM, Kruissink EC, Vanderspoel J, Vandenbrink F (1994) J Catal 148:660

    Article  CAS  Google Scholar 

  19. Simhan RG (1983) J Non Cryst Solids 54:335

    Article  CAS  Google Scholar 

  20. Feng Z, Postula WS, Erkey C, Philip CV, Akgerman A, Anthony RG (1994) J Catal 148:660

    Article  Google Scholar 

  21. Neumayer DA, Cartier E (2001) J Appl Phys 90:1801

    Article  CAS  Google Scholar 

  22. Zhan Z, Zeng HC (1999) J Non Cryst Solids 243:26, and references therein

  23. Miller JB, Ko EI (1997) Catal Today 35:269

    Article  CAS  Google Scholar 

  24. Terry KW, Lugmair CG, Tilley TD (1997) J Am Chem Soc 119:9745

    Article  CAS  Google Scholar 

  25. Armelao L, Bleiner D, Di Noto V, Gross S, Sada C, Schubert U, Tondello E, Vonmont H, Zattin A (2005) Appl Surf Sci 249:277–294

    Article  CAS  Google Scholar 

  26. Armelao L, Eisenmenger-Sittner C, Groenewolt M, Gross S, Sada C, Schubert U, Tondello E, Zattin A (2005) J Mater Chem 15:1838–1848

    Article  CAS  Google Scholar 

  27. Armelao L, Bertagnolli H, Gross S, Krishnan V, Lavrencic-Stangar U, Müller K, Orel B, Srinivasan G, Tondello E, Zattin A (2005) J Mater Chem 15:1954–1965

    Article  CAS  Google Scholar 

  28. Armelao L, Gross S, Müller K, Pace G, Tondello E, Tsetsgee O, Zattin A Chem Mat 18:6019–6030

  29. Armelao L, Bertagnolli H, Bleiner D, Groenewolt M, Gross S, Krishnan V, Sada C, Schubert U, Tondello E, Zattin A (2007) Adv Funct Mater 17:1671–1681

    Article  CAS  Google Scholar 

  30. Mascotto S, Tsetsgee O, Müller K, Maccato C, Smarsly B, Brandhuber D, Tondello E, Gross S (2007) J Mater Chem 17:4387–4399

    Article  CAS  Google Scholar 

  31. Bill J, Aldinger F (1995) Adv Mater 7:775–787

    Article  CAS  Google Scholar 

  32. Trimmel G, Moraru B, Gross S, Di Noto V, Schubert U (2001) Macromol Symp 175:357

    Article  CAS  Google Scholar 

  33. Gross S, Trimmel G, Schubert U, Di Noto V (2002) Polym Adv Technol 13:254

    Article  CAS  Google Scholar 

  34. Gross S, Di Noto V, Kickelbick G, Schubert U (2002) Mater Res Soc Symp Proc 726:Q4.1.1

  35. Schubert U, Völkel T, Moszner N (2001) Chem Mater 726:3811

    Article  Google Scholar 

  36. Moraru B, Hüsing N, Kickelbick G, Schubert U, Fratzl P, Peterlik H (2002) Chem Mater 14:2732

    Article  CAS  Google Scholar 

  37. Gao Y, Choudhury N, Matisons J, Schubert U (2002) Chem Mater 14:4522

    Article  CAS  Google Scholar 

  38. Palacio F, Oliete P, Schubert U, Mijatovic I, Hüsing N, Peterlik H (2004) J Mater Chem 14:1873

    Article  CAS  Google Scholar 

  39. Gross S, Di Noto V, Schubert U (2003) J Non Cryst Solids 322:154

    Article  CAS  Google Scholar 

  40. Graziola F, Girardi F, Bauer M, Di Maggio R, Rovezzi M, Bertagnolli H, Sada C, Rossetto G, Gross S (2008) Polymer 49:4332

    Article  CAS  Google Scholar 

  41. Girardi F, Graziola F, Aldighieri P, Fedrizzi L, Gross S, Di Maggio R (2008) Prog Org Coat 62:376

    Article  CAS  Google Scholar 

  42. Sangermano M, Gross S, Pracella L, Priola A, Rizza G (2007) Macromol Chem Phys 208:1730–1736

    Article  CAS  Google Scholar 

  43. Di Maggio R, Dirè S, Callone E, Girardi F, Kickelbick G (2008) J Sol Gel Sci Technol 48:188

    Google Scholar 

  44. Di Maggio R, Dirè S, Callone E, Girardi F, Kickelbick G (2010) Polymer 51:832–841

    Article  CAS  Google Scholar 

  45. Meneghetti F, Wendel E, Mascotto S, Smarsly BM, Tondello E, Bertagnolli H, Gross S (2010) CrystEngComm 12:1639

    Article  CAS  Google Scholar 

  46. Gross S, Zattin A, Di Noto V, Lavina S (2006) Monatsh Chem 137:583–593

    Article  CAS  Google Scholar 

  47. Natile MM, Galenda A, Glisenti A, Mascotto S, Gross S (2009) J Non Cryst Solids 355:481–487

    Article  CAS  Google Scholar 

  48. Kailasam K, Mascotto S, Gross S, Maccato C, Müller K (2010) J Mater Chem 20:2345–2355

    Article  CAS  Google Scholar 

  49. Belli Dell’Amico D, Bertagnolli H, Calderazzo F, D’Arienzo M, Gross S, Rancan M, Scotti R, Smarsly B, Supplit R, Tondello E, Wendel E (2009) Chem Eur J 15:4931–4943

    Article  Google Scholar 

  50. Lavrencic Stangar U, Sassi A, Venzo A, Zattin A, Japelj B, Orel B, Gross S (2009) J Sol Gel Sci Technol 49:329–335

    Article  CAS  Google Scholar 

  51. Trimmel G, Gross S, Kickelbick G, Schubert U (2001) Appl Organomet Chem 15:410

    Article  Google Scholar 

  52. Gross S, Kickelbick G, Puchberger M, Schubert U (2003) Monatsh Chem 134:1053

    CAS  Google Scholar 

  53. Innocenzi P (2003) J Non Cryst Solids 316:309

    Article  CAS  Google Scholar 

  54. Pham QT, Petiand R, Waton H (1991) Proton and carbon NMR spectra of polymers. Penton Press ltd, London

    Google Scholar 

  55. Innocenzi P, Brusatin G, Licoccia S, Di Vona ML, Babonneau F, Alonso B (2003) Chem Mater 15:4790

    Article  CAS  Google Scholar 

  56. Schraml J, Chuy ND, Novak P, Chvalovsky V, Mägi M, Lippman E (1978) Collect Czech Chem Commun 43:3202

    CAS  Google Scholar 

  57. Jimenez-Morales A, Aranda P, Galvan JC (2003) J Mater Process Technol 5:143–144

    Google Scholar 

  58. Isoda K, Kuroda K, Ogawa M (2000) Chem Mater 12:1702–1707

    Article  CAS  Google Scholar 

  59. Luo J, Lannutti J, Seghi R (2001) J Adhes Sci Technol 15:267

    Article  CAS  Google Scholar 

  60. Roychen J, Zhang S, Ford WT (1996) Macromolecules 29:1305

    Article  Google Scholar 

  61. Pursch M, Sander LC, Albert K (1996) Anal Chem 68:4107

    Article  CAS  Google Scholar 

  62. Kogler FR, Schubert U (2007) Polymer 48:4990

    Article  CAS  Google Scholar 

  63. Teo BK (1986) EXAFS: basic principles and data analysis. Springer, Berlin

    Google Scholar 

  64. Koningsberger DC, Prins R (1988) X-ray absorption spectroscopy (principles, applications, techniques of EXAFS, SEXAFS, and XANES). Wiley, New York

    Google Scholar 

  65. Rehr JJ, Albers RC (2002) Rev Mod Phys 72:621

    Article  Google Scholar 

  66. Osendi MI, Moya JS, Serna CJ, Soria J (1985) J Am Ceram Soc 68:135

    Article  CAS  Google Scholar 

  67. Garvie RC (1965) J Phys Chem 69:1238

    Article  CAS  Google Scholar 

  68. Garvie RC (1978) J Phys Chem 82:218

    Article  CAS  Google Scholar 

  69. Nagarajan VS, Rao KJ (1989) J Mater Sci 24:2140

    Article  CAS  Google Scholar 

  70. Heuer AH, Claussen N, Kriven WM, Rühle M (1982) J Am Ceram Soc 65:642

    Article  CAS  Google Scholar 

  71. Skandan G, Hahn H, Roddy M, Cannon WR (1994) J Am Ceram Soc 77:1706

    Article  CAS  Google Scholar 

  72. Scherrer P (1918) Nachr Ges Wiss Göttingen 96

  73. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  74. Del Monte F, Larsen W, Mackenzie JD (2000) J Am Ceram Soc 83:628

    Article  CAS  Google Scholar 

  75. Lange FF (1982) J Mater Sci 17:225

    Article  CAS  Google Scholar 

  76. Lange FF (1982) J Mater Sci 17:235

    Article  CAS  Google Scholar 

  77. Maria JP, Wickaksana D, Parrette J, Kingon AI (2002) J Mater Res 17:1571

    Article  CAS  Google Scholar 

  78. Gmelins L (1973) Handbuch der anorganischen Chemie. Verlag Chemie, Wienheim

  79. Suyama R, Asida T, Kume S (1985) J Am Ceram Soc 68:314

    Article  Google Scholar 

  80. Bykov YV, Rybakov KI, Semenov VE (2001) J Phys D 34:R55

    Google Scholar 

  81. Zhao C, Vleugels J, Groffils C, Luypaert PJ, Van Der Biest O (2000) Acta Mater 48:3795

    Article  CAS  Google Scholar 

  82. Clark E, Sutton WH, Lewis DA (1997) Ceram Trans 80:731

    Google Scholar 

  83. Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishan PA (1999) Chem Mater 11:882

    Article  CAS  Google Scholar 

  84. Raner KD, Strauss CR, Vyskoc F, Mokbel L (1993) J Org Chem 58:950

    Article  CAS  Google Scholar 

  85. Jhung JH, Lee JH, Forster PM, Ferey G, Cheetham AK, Chang JS (2006) Chem A Eur J 12:7899

    Article  CAS  Google Scholar 

  86. Tompsett GA, Conner WC, Yngvesson KS (2006) Chem Phys Chem 7:296

    Article  CAS  Google Scholar 

  87. Yao KW, Jaenicke S, Lin JY, Tan KL (1998) Appl Catal B 16:291–301

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like firstly to acknowledge all the co-workers (master and PhD students), the colleagues and the cooperation partners (whose names are reported in all the quoted references) who have given, with their work, ideas and knowledge, an outstanding contribution to these studies. The National Research Council (CNR), Italy, the Universities of Padova and Trento, the Italian Consortium INSTM are acknowledged for financial support. The Provincia Autonoma di Trento (PAT, Italy) is gratefully acknowledged for financial support to the PAT project “CeNaCoLi”. The Italian Rectors’ Conference (CRUI), the Ateneo Italo-Tedesco and the Deutsche Akademische Austauschdienst (DAAD) are gratefully acknowledged by both authors for funding of the researchers mobility in the framework of a Vigoni Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Gross.

Additional information

Dedicated to the memory of my husband Klaus Müller.

Professor Klaus Müller, who unexpectedly and prematurely passed away on 1.4.2011, was Full Professor of Chemistry at the University of Trento and a very appreciated and internationally known solid state NMR spectroscopist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, S., Müller, K. Sol–gel derived silica-based organic–inorganic hybrid materials as “composite precursors” for the synthesis of highly homogeneous nanostructured mixed oxides: an overview. J Sol-Gel Sci Technol 60, 283–298 (2011). https://doi.org/10.1007/s10971-011-2565-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2565-x

Keywords

Navigation