Skip to main content
Log in

Sol–gel-derived photonic structures: fabrication, assessment, and application

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol–gel is a handy, very flexible, and cheap method to fabricate, study, and apply innovative photonic structures. The possibility of starting from molecular precursors and elementary building blocks permits to tailor structures at the molecular level and to create new materials with enhanced performances. Of specific interest for the study of important physical effects as well as for application in light management are confined structures on the nano-micro scale as photonic crystal and planar waveguides. Activation by luminescent species and in particular by rare earth ions allows results in the integrated optics area covering application in sensing, biomedical diagnostic, telecommunication, lightning, and photon management. The present review is focused on some recent results obtained by the authors in Sol–gel photonics. The first part presents colloidal structures including single nano-micro spheres and photonic crystal structures. The second part of the review deals with amorphous and transparent glass–ceramic employed for the fabrication of confined structures in planar format. Some specific application are also reported to highlight the role of sol gel photonics in the development of high performance optical sensors, waveguide lasers, and nanostructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Sakka S (2005) Handbook of sol–gel science and technology: processing, characterization, and applications. Kluwer Academic Publishers, New York

  2. Chiappini A, Armellini C, Chiasera A, Ferrari M, Jestin Y, Mattarelli M, Montagna M, Moser E, Nunzi Conti G, Pelli S, Righini GC, Clara Gonçalves M, Almeida Rui M (2007) Design of photonic structures by sol–gel-derived silica nanospheres. J Non-Cryst Solids 353:674–678

    Article  CAS  Google Scholar 

  3. Ferrari M, Righini G C, (2008) Rare-earth-doped glasses for integrated optical amplifiers. In: Sooraj Hussain N, Santos JD (ed.) Physics and chemistry of rare-earth ions doped glasses chapter 3, Materials Science Foundations (monograph series), vols 46–47, Trans Tech Publishers (ttp), Switzerland

  4. Alombert-Goget G, Armellini C, Berneschi S, Chiappini A, Chiasera A, Ferrari M, Guddala S, Moser E, Pelli S, Rao DN, Righini GC (2010) Tb3+/Yb3+ co-activated Silica-Hafnia glass ceramic waveguides. Opt Mater 33:227–230

    Article  CAS  Google Scholar 

  5. Gonçalves CM, Fortes Luis M, Almeida Rui M, Chiasera A, Chiappini A, Ferrari M, Bhaktha S (2010) Photoluminescence in Er3+/Yb3+ -doped silica-titania inverse opal structures. J Sol-Gel Sci Technol 55:52–58

    Article  Google Scholar 

  6. Galisteo-López JF, García-Santamaría F, Golmayo D, Juárez BH, Palacios E, López C (2005) Self assembly approach to optical meta-materials. J Opt Pure Appl Opt 7:S244–S254

    Article  Google Scholar 

  7. García PD, Sapienza R, Blanco Á, López C (2007) Photonic glass: a novel random material for light. Adv Mater 19:2597–2602

    Article  Google Scholar 

  8. Matijević E (1994) Uniform inorganic colloid dispersions. Achievements and challenges. Langmuir 10:8–16

    Article  Google Scholar 

  9. Holland BT, Blanford CF, Do T, Stein A (1999) Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem Mater 11:795–805

    Article  CAS  Google Scholar 

  10. Barros Filho DA, Hisano C, Bertholdo R, Schiavetto MG, Santilli C, Ribeiro SJL, Messaddeq Y (2005) Effects of self-assembly process of latex spheres on the final topology of macroporous silica. J Colloid Interf Sci 291:448–464

    Article  CAS  Google Scholar 

  11. Chiappini A, Armellini C, Chiasera A, Ferrari M, Fortes L, Clara Gonçalves M, Guider R, Jestin Y, Retoux R, Nunzi Conti G, Pelli S, Almeida Rui M, Righini GC (2009) An alternative method to obtain direct opal photonic crystal structures. J Non-Cryst Solids 355:1167–1170

    Article  CAS  Google Scholar 

  12. Caruso F (2004) Colloids and colloid assemblies. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Google Scholar 

  13. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interf Sci 26:62–69

    Article  Google Scholar 

  14. Bogush GH, Tracy MA, Zukoski IV CF (1988) Preparation of monodisperse silica particles: control of size and mass fraction. J Non-Cryst Solids 104:95–106

    Article  CAS  Google Scholar 

  15. Righini GC, Armellini C, Chiasera A, Jestin Y, Ferrari M, Chiappini A, Montagna M, Arfuso Duverger C, Féron P, Berneschi S, Brenci M, Nunzi Conti G, Pelli S, Gonçalves C, Almeida Rui M (2007) Er3+-activated sol–gel silica derived spherical microresonators. Glass Technol Eur J Glass Sci Technol A 48:200–203

    CAS  Google Scholar 

  16. De Dood MJA, Berkhout B, Van Kats CM, Polman A, Van Blaaderen A (2002) Acid-based synthesis of monodisperse rare-earth-doped colloidal SiO2 spheres. Chem Mater 14:2849–2853

    Article  Google Scholar 

  17. Moran CE, Hale GD, Halas NJ (2001) Synthesis and characterization of lanthanide-doped silica microspheres. Langmuir 17:8376–8379

    Article  CAS  Google Scholar 

  18. Karmakar B, De G, Ganguli D (2000) Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS. J Non-Cryst Solids 272:119–126

    Article  CAS  Google Scholar 

  19. Jiang P, Bertone JF, Hwang KS, Colvin VL (1999) Single-crystal colloidal multilayers of controlled thickness. Chem Mat 11:2132–2140

    Article  CAS  Google Scholar 

  20. Galisteo-Lõpez JF, Ibisate M, Sapienza R, Froufe-Pérez LS, Blanco Ú, Lõpez C (2011) Self-assembled photonic structures. Adv Mat 23:30–69

    Article  Google Scholar 

  21. Woodcock LV (1997) Entropy difference between the face-centred cubic and hexagonal close- packed crystal structures. Nature 385:141–143

    Article  CAS  Google Scholar 

  22. Míguez H, López C, Meseguer F, Blanco A, Vázquez L, Mayoral R, Ocaña M, Fornés V, Mifsud A (1997) Photonic crystal properties of packed submicrometric SiO2 spheres. Appl Phys Lett 71:1148–1150

    Article  Google Scholar 

  23. Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard SW, Lopez C, Meseguer F, Miguez H, Mondla JP, Ozin GA, Toader O, Van Driel HM (2000) Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405:437–440

    Article  CAS  Google Scholar 

  24. Fudouzi H (2009) Optical properties caused by periodical array structure with colloidal particles and their applications. Adv Powder Tech 20:502–508

    Article  CAS  Google Scholar 

  25. Pronk S, Frenkel D (2004) Large effect of polydispersity on defect concentrations in colloidal crystals. J Chem Phys 120:6764–6768

    Article  CAS  Google Scholar 

  26. Hilhorst J, Abramova VV, Sinitskii A, Sapoletova NA, Napolskii KS, Eliseev AA, Byelov DV, Grigoryeva NA, Vasilieva AV, Bouwman WG, Kvashnina K, Snigirev A, Grigoriev SV, Petukhov AV (2009) Double stacking faults in convectively assembled crystals of colloidal spheres. Langmuir 25:10408–10412

    Article  CAS  Google Scholar 

  27. Chiappini A, Armellini C, Chiasera A, Jestin Y, Ferrari M, Moser E, Nunzi Conti G, Pelli S, Retoux R, Righini GC (2009) Er3+-activated sol–gel silica confined structures for photonic applications. Opt Mater 31:1275–1279

    Article  CAS  Google Scholar 

  28. Arsenault AC, Puzzo DP, Manners I, Ozin GA (2007) Photonic-crystal full-colour displays. Nat Photonics 1:468–472

    Article  CAS  Google Scholar 

  29. Fudouzi H, Sawada T (2006) Photonic rubber sheets with tunable color by elastic deformation. Langmuir 22:1365–1368

    Article  CAS  Google Scholar 

  30. Morandi V, Marabelli F, Amendola V, Meneghetti M, Comoretto D (2007) Colloidal photonic crystals doped with gold nanoparticles: Spectroscopy and optical switching properties. Adv Fun Mat 17:2779–2786

    Article  CAS  Google Scholar 

  31. Qian W, Gu Z–Z, Fujishima A, Sato O (2002) Three-dimensionally ordered macroporous polymer materials: an approach for biosensor applications. Langmuir 18:4526–4529

    Article  CAS  Google Scholar 

  32. Lu L, Randjelovic I, Capek R, Gaponik N, Yang J, Zhang H, Eychmüller A (2005) Controlled fabrication of gold-coated 3D ordered colloidal crystal films and their application in surface-enhanced Raman spectroscopy. Chem Mat 17:5731–5736

    Article  CAS  Google Scholar 

  33. Chiappini A, Alombert-Goget G, Armellini C, Berneschi S, Boulard B, Brenci M, Cacciari I, Duverger-Arfuso C, Guddala S, Ferrari M, Moser E, Narayana Rao D, Righini GC (2010) Opal-type photonic crystals: fabrication and application. Adv Sci Tech 71:50–57

    Article  CAS  Google Scholar 

  34. Chiappini A, Guddala S, Armellini C, Berneschi S, Cacciari I, Duverger-Arfuso C, Ferrari M, Righini GC (2010) Fabrication and characterization of colloidal crystals infiltrated with metallic nanoparticles. Proc SPIE 7598. doi:10.1117/12.841907

  35. Gonçalves RR, Carturan G, Montagna M, Ferrari M, Zampedri L, Pelli S, Righini GC, Ribeiro SLJ, Mesaddeq Y (2004) Erbium-activated HfO2-based waveguides for photonics. Opt Mater 25:131–139

    Article  Google Scholar 

  36. Berneschi S, Soria S, Righini GC, Alombert-Goget G, Chiappini A, Chiasera A, Jestin Y, Ferrari M, Moser E, Bhaktha SNB, Boulard B, Duverger Arfuso C, Turrell S (2010) Rare-earth-activated glass ceramic waveguides. Opt Mater 32:1644–1647

    Google Scholar 

  37. Peled A, Chiasera A, Nathan M, Ferrari M, Ruschin S (2008) Monolithic rare-earth doped sol–gel tapered rib waveguide laser. App Phys Lett 92:221104/1–221104/1

    Google Scholar 

  38. Bhaktha SNB, Beclin F, Bouazaoui M, Capoen B, Chiasera A, Ferrari M, Kinowski C, Righini GC, Robbe O, Turrell S (2008) Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content. Appl Phys Lett 93:211904/1–211904/3

    Google Scholar 

  39. Gonçalves RR, Carturan G, Zampedri L, Ferrari M, Montagna M, Chiasera A, Righini GC, Pelli S, Ribeiro SJL, Messaddeq Y (2002) Sol–gel Er-doped SiO2–HfO2 planar waveguides: a viable system for 1.5 μm application. Appl Phys Lett 81:28–30

    Article  Google Scholar 

  40. Zampedri L, Tosello C, Rossi F, Ronchin S, Rolli R, Montagna M, Chiasera A, Righini GC, Pelli S, Monteil A, Chaussedent S, Bernard C, Duverger C, Ferrari M, Armellini C (2001) Erbium-activated monolithic silica xerogels and silica-titania planar waveguides: optical and spectroscopic characterization. Proc SPIE 4282:200–209

    Article  CAS  Google Scholar 

  41. Ferrari M, Armellini C, Berneschi S, Brenci M, Chiappini A, Chiasera A, Jestin Y, Mattarelli M, Montagna M, Moser E, Nunzi Conti G, Pelli S, Righini GC, Tosello C (2006) Homogeneous and nanocomposite rare-earth-activated glasses for photonic devices. Proc SPIE 6183:181–194

    Google Scholar 

  42. Marques AC, Almeida RM (2006) Raman spectra and structure of multicomponent oxide planar waveguides prepared by sol–gel. J Sol-Gel Sci Technol 40:371–378

    Article  CAS  Google Scholar 

  43. Zampedri L, Righini GC, Portales H, Pelli S, Nunzi Conti G, Montagna M, Mattarelli M, Gonçalves RR, Ferrari M, Chiasera A, Armellini C (2004) Sol–Gel-derived Er-activated SiO2–HfO2 planar waveguides for 1.5 μm application. J Non-Cryst Solids 345&346:580–584

    Google Scholar 

  44. Afify ND, Dalba G, Armellini C, Ferrari M, Rocca F, Kuzmin A (2007) Local structure around Er3+ in SiO2–HfO2 glassy waveguides using EXAFS. Phys Rev 76:024114/1–024114/8

    Google Scholar 

  45. Monteil A, El-Jouad M, Alombert-Goget G, Chaussedent S, Gaumer N, Mahot A, Chiasera A, Jestin Y, Ferrari M (2008) Relationship between structure and optical properties in rare-earth-doped hafnium and silicon oxides: modeling and spectroscopic measurements. J Non-Cryst Solids 354:4719–4722

    Article  CAS  Google Scholar 

  46. Minati L, Speranza G, Jestin Y, Ferrari M (2007) X-ray photoelectron spectroscopy of Er3+-activated silica-hafnia waveguides. J Non-Cryst Solids 353:502–505

    Article  CAS  Google Scholar 

  47. Stokowski SE, Saroyan RA, Weber MJ (1981) Nd-doped laser glass spectroscopic and physical properties, M-095, Rev. 2, vols 1 and 2, Lawrence Livermore National Laboratory, Livermore CA

  48. Ferrari M (2005) Handbook of sol–gel science and technology, processing, characterization and applications. In: Almeida RM, Sakka S (eds) Characterization of sol–gel materials and products, vol II. Kluwer Academic Publishers, Boston

    Google Scholar 

  49. Armellini C, Chiappini A, Chiasera A, Ferrari M, Jestin Y, Mortier M, Moser E, Retoux R, Righini GC (2007) Rare earth-activated silca-based nanocomposites. J Nanomaterials. doi:10.1155/2007/84745

  50. Jestin Y, Armellini C, Chiappini A, Chiasera A, Ferrari M, Goyes C, Mattarelli M, Montagna M, Moser E, Nunzi Conti G, Pelli S, Righini GC, Speranza G (2007) Erbium activated HfO2-based glass-ceramics waveguides for photonics. J Non-Cryst Solids 353:494–497

    Article  CAS  Google Scholar 

  51. Jestin Y, Afify N, Armellini C, Berneschi S, Bhaktha SNB, Boulard B, Chiappini A, Chiasera A, Dalba G, Duverger C, Ferrari M, Goyes Lopez CE, Mattarelli M, Montagna M, Moser E, Nunzi Conti G, Pelli S, Righini GC, Rocca F (2006) Er3+-activated silica-hafnia glass-ceramics planar waveguides. Proc SPIE 6183: 61831W/1–61831W/8

  52. Péron O, Boulard B, Jestin Y, Ferrari M, Duverger-Arfuso C, Kodjikian S, Gao Y (2008) Erbium doped fluoride glass-ceramics waveguides fabricated by PVD. J Non-Cryst Solids 354:3586–3591

    Article  Google Scholar 

  53. Nunzi Conti G, Berneschi S, Brenci M, Pelli S, Sebastiani S, Righini GC, Tosello C, Chiasera A, Ferrari M (2006) UV photoimprinting of channel waveguides on active SiO2–GeO2 sputtered thin films. Appl Phys Lett 89:121102/1–121102/3

    Google Scholar 

  54. Chiasera A, Dumeige Y, Féron P, Ferrari M, Jestin Y, Nunzi Conti G, Pelli S, Soria S, Righini GC (2010) Spherical whispering-gallery-mode microresonators. Laser Photob Rev 4:457–482

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of this work was performed in the framework of the research projects PAT-FaStFal, ITPAR Phase II area Nanophotonics, NAOMI, and COST MP0702: Towards Functional Sub-Wavelength Photonic Structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiappini, A., Chiasera, A., Berneschi, S. et al. Sol–gel-derived photonic structures: fabrication, assessment, and application. J Sol-Gel Sci Technol 60, 408–425 (2011). https://doi.org/10.1007/s10971-011-2556-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2556-y

Keywords

Navigation