Skip to main content
Log in

Ni-based xero- and aerogels as catalysts for nitroxidation processes

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Porous nanocomposites made out of nickel dispersed on silica or alumina matrices were prepared as prospective catalysts for the nitroxidation of hydrocarbons in the form of aerogel or xerogel by adopting either a supercritical or a conventional gel drying procedure. The structural and textural features of the materials were investigated by X-ray diffraction, transmission electron microscopy and N2 physisorption and combined to the acid/base and reducibility data as deduced by adsorption microcalorimetry and temperature programmed reduction (TPR) profiles. The alumina-based samples are made out of nanocrystalline nickel aluminate and are mesoporous, although the aerogel has larger pore volumes and surface area than the xerogel. On the other hand, in the silica-based samples nickel oxide nanocrystals are dispersed on amorphous silica, the size of the nanocrystals being around 5 nm in the microporous xerogel and 14 nm in the mainly mesoporous aerogel. TPR data point out that the alumina-based samples have similar reducibility, whereas significant differences were observed in the silica-supported composites, the NiO–SiO2 aerogel exhibiting improved reducibility at low temperature. The NO-catalyst interaction was monitored by temperature programmed NO reaction coupled to mass spectrometry and preliminary tests on the use of the NiO–SiO2 xerogel and aerogel nanocomposites for the catalytic nitroxidation of 1-methyl-naphthalene to 1-naphthonitrile were obtained in a fixed-bed continuous-flow reactor. The data indicate that the aerogel exhibits larger selectivity than the corresponding xerogel, pointing out the importance of tuning the sol–gel parameters in the design of porous composite materials for catalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ward DA, Ko EI (1995) Ind Eng Chem Res 34:421–433

    Article  CAS  Google Scholar 

  2. Feng S Yang W (2011) Effect of the preparation method on the catalytic performance of Ca3Co4O5 for methane oxidation J Sol-Gel Sci Technol. doi:10.1007/s10971-010-2396-1

  3. Sinha AK, Seelan S, Okumura M, Akita T, Tsubota S, Haruta M (2005) J Phys Chem B 109:3956–3965

    Article  CAS  Google Scholar 

  4. Brinker CJ, Scherer GW (1990) Sol-gel science. Academic Press, San Diego, CA

    Google Scholar 

  5. Innocenzi P, Malfatti L, Kidchob T, Falcaro P (2009) Chem Mater 21:2555–2564

    Article  CAS  Google Scholar 

  6. Framery E, Mutin PH (2002) J Sol-Gel Sci Technol 24:191–195

    Article  CAS  Google Scholar 

  7. Husing N, Schubert U (1998) Angew Chem Int Ed 37:22–45

    Article  CAS  Google Scholar 

  8. Pajonk GM (1991) Catal Today 72:217–266

    CAS  Google Scholar 

  9. Pajonk GM (1999) Catal Today 52:3–13

    Article  CAS  Google Scholar 

  10. Schneider M, Baiker A (1995) Catal Rev-Sci Eng 37:515–556

    Article  CAS  Google Scholar 

  11. Vallribera A, Molins E (2008) Aerogel supported nanoparticles in catalysis. In: Astruc D (ed) Nanoparticles and catalysis. Wiley, Weinheim, Germany

    Google Scholar 

  12. Falqui A, Loche D, Casula MF, Corrias A, Gozzi D, Latini A (2011) J Nanosci Nanotechnol 11:2215–2225

    Article  CAS  Google Scholar 

  13. Ferino I, Casula MF, Corrias A, Cutrufello MG, Monaci R, Paschina G (2000) Phys Chem Chem Phys 2:1847–1854

    Article  CAS  Google Scholar 

  14. Dusi M, Muller CA, Mallat T, Baiker A (1999) Chem Comm 2:197–198

    Article  Google Scholar 

  15. Pajonk GM, Manzalji T (1993) Catal Lett 21:361–369

    Article  CAS  Google Scholar 

  16. Pajonk GM (1997) Catal Today 35:319–337

    Article  CAS  Google Scholar 

  17. Corrias A, Casula MF, Falqui A, Paschina G (2004) Chem Mater 16:3130–3138

    Article  CAS  Google Scholar 

  18. Casula MF, Corrias A, Paschina G (2000) J Mater Res 15:2187–2194

    Article  CAS  Google Scholar 

  19. PDF-2 File. ICDD—International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA

  20. Brunauer S, Emmet PH, Teller E (1938) J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  21. Lippens BC, De Boer JH (1965) J Catal 4:319–323

    Article  CAS  Google Scholar 

  22. Lecloux A, Pirard JP (1979) J Colloid Interface Sci 70:265–281

    Article  CAS  Google Scholar 

  23. Dubinin MM (1955) Q Rev Chem Soc 9:101–114

    Article  CAS  Google Scholar 

  24. Rouquerol F, Rouquerol J, Sing KSW (1999) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, London, UK

    Google Scholar 

  25. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  26. Fang K, Ren J, Sun Y (2005) J Mol Catal A Chem 229:51–58

    Article  CAS  Google Scholar 

  27. Kirumakki SR, Shpeizer BG, Vidya Sagar G, Chary KVR, Clearfield A (2006) J Catal 242:319–331

    Article  CAS  Google Scholar 

  28. He S, Jing Q, Yu W, Mo L, Lou H, Zheng X (2009) Catal Today 148:130–133

    Article  CAS  Google Scholar 

  29. Wang Y, Wu R, Zhao Y (2010) Catal Today 158:470–474

    Article  CAS  Google Scholar 

  30. Ran R, Xiong G, Yang W (2002) J Mater Chem 12:1854–1859

    Article  CAS  Google Scholar 

  31. Gayán P, Dueso C, Abad A, Adanez J, de Diego LF, García-Labiano F (2009) Fuel 88:1016–1023

    Article  Google Scholar 

  32. Roy B, Loganathan K, Pham HN, Datye AK, Leclerc CA (2010) Int J Hydrogen Energ 35:11700–11708

    Article  CAS  Google Scholar 

  33. Salhi N, Boulahouache A, Petit C, Kiennemann A, Rabia C (2010) Steam reforming of methane to syngas over NiAl2O4 spinel catalysts. Int J Hydrogen Energ. doi:10.1016/j.ijhydene.2010.11.071

Download references

Acknowledgments

The Italian Institute of Technology (IIT) under the SEED project “NANOCAT” and Regione Autonoma della Sardegna through POR Sardegna FSE 2007–2013, L.R.7/2007 are gratefully acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Francesca Casula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cutrufello, M.G., Rombi, E., Ferino, I. et al. Ni-based xero- and aerogels as catalysts for nitroxidation processes. J Sol-Gel Sci Technol 60, 324–332 (2011). https://doi.org/10.1007/s10971-011-2460-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2460-5

Keywords

Navigation