Skip to main content

The influence of titanium dioxide phase composition on dyes photocatalysis

Abstract

A comparative study of TiO2 powders prepared by sol–gel methods is presented. Titanium tetraisopropoxide was used as the precursor for the sol–gel processes. The effects of the annealing treatment on phase, crystallite size, porosity and photodegradation of dyes (methyl orange and methylene blue) were studied. The phase structure, microstructure and surface properties of the films were characterized by using X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). The X-ray diffraction was used for crystal phase identification, for the accurate estimation of the anatase–rutile ratio and for the crystallite size evaluation of each polymorph in the samples. It was found that the only TiO2 anatase phase of the synthesized TiO2 develops below 500 °C, between 600 and 800 °C the anatase coexist with rutile and above 800 °C only the rutile phase was found in the samples. Attention has been paid not only to crystal structures, but also to the porosity, the particle size and the photocatalytic properties. However, the annealing temperature was found to have significant influence on the photocatalytic properties. Different TiO2 doctor blade thin films were obtained mixing the sol gel powder (100% anatase) and TiO2 Aldrich with TiO2 Degussa P25. The surfactant (Triton X100 or sodium dodecyl sulfate) affects the packing density of the particles during deposition and the photocatalytic degradation efficiency of the dyes. The photocatalytic degradation kinetics of methyl orange and methylene blue using TiO2 thin film were investigated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Choi HS, Al-Abed R, Dionysiou D, Stathatos E, Lianos P (2010) In: Escobar IC, Schäfer AI (eds) Sustainable water for the future: water recycling versus desalination. Elsevier, Amsterdam

  2. Gaya UI, Abdullah AH (2008) J Photochem Photobiol C 9:1–12

    Article  CAS  Google Scholar 

  3. Rehman S, Ullah R, Butt AM, Gohar ND (2009) J Hazard Mater 170:560–569

    Article  CAS  Google Scholar 

  4. Torres Delgado G, Zúñiga Romero CI, Mayén Hernández SA, Castanedo Pérez R, Zelaya Angel O (2009) Sol Energy Mater Sol Cells 93:55–59

    Article  CAS  Google Scholar 

  5. Yusta FJ, Hichman ML, Shamlian H (1997) J Mater Chem 8:1421–1427

    Article  Google Scholar 

  6. Esteves A, Oliveira LCA, Ramalho TC, Goncalves M, Anastacio AS, Carvalho HWP (2008) Catal Commun 10:330–332

    Article  CAS  Google Scholar 

  7. Kim H, Senthil K, Yong K (2010) Mater Chem Phys 120:452–455

    Article  CAS  Google Scholar 

  8. Janus M, Morawski AW (2007) Appl Catal. B 75:118–123

    CAS  Google Scholar 

  9. Li HB, Duan XC, Liu GC, Li LL (2008) Mater Res Bull 43:1971–1981

    Article  CAS  Google Scholar 

  10. Bettinelli M, Dallacasa V, Falcomer D, Fornasiero P, Gombac V, Montini T, Roman L, Speghini A (2007) J Hazard Mater 146:529–534

    Article  CAS  Google Scholar 

  11. Chen C, Wang Z, Ruan S, Zou B, Zhao M, Wu F (2008) Dyes Pigm 77:204–209

    Article  CAS  Google Scholar 

  12. Kosowska B, Mozia S, Morawski AW, Grzmil B, Janus M, Kalucki K (2005) Sol Energy Mater Sol Cells 88:269–280

    Article  CAS  Google Scholar 

  13. Park H, Choi W (2004) J Phys Chem B 108:4086–4093

    Article  CAS  Google Scholar 

  14. Li M, Zhou S, Zhang Y, Chen G, Hong Z (2008) Appl Surf Sci 254:3762–3766

    Article  CAS  Google Scholar 

  15. Lin CF, Wu CH, Onn ZN (2008) J Hazard Mater 154:1033–1039

    Article  CAS  Google Scholar 

  16. Wu CH (2004) Chemosphere 57:601–608

    Article  CAS  Google Scholar 

  17. Wang S, Zhang X, Cheng G, Jiang X, Li Y, Huang Y, Du Z (2005) Chem Phys Lett 405:63–67

    Article  CAS  Google Scholar 

  18. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol. C 1:1–9

    CAS  Google Scholar 

  19. Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Appl Catal. A 359:25–40

    CAS  Google Scholar 

  20. Baorang L, Xiaohui W, Minyu Y, Longtu L (2003) Mater Chem Phys 78:184–188

    Article  Google Scholar 

  21. Almquist CB, Biswas P (2002) J Catal 212:145–156

    Article  CAS  Google Scholar 

  22. Mills A, Hill G, Bhopal S, Parkin IP, O’Neill SA (2003) J Photochem Photobiol. A 160:185–194

    CAS  Google Scholar 

  23. Song GB, Liang JK, Liu FS, Peng TJ, Rao GH (2005) Thin Solid Films 491:110–116

    Article  CAS  Google Scholar 

  24. Burton AW, Ong K, Rea T, Chan IY (2009) Microporous Mesoporous Mater 117:75–90

    Article  CAS  Google Scholar 

  25. Vinodgopal K, Wynkoop DE, Kamat PV (1996) Environ Sci Tech 30:1660–1666

    Article  CAS  Google Scholar 

  26. Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2002) App Catal. B 39:75–90

    CAS  Google Scholar 

  27. Tarasov VV, Barancova GS, Zaitsev NK, Dongxiang Z (2003) Process Saf Environ Prot 81:243–249

    Article  CAS  Google Scholar 

  28. Kumar KV, Porkodi K, Rocha F (2008) Catal Commun 9:82–84

    Article  CAS  Google Scholar 

  29. Baran W, Adamek E, Makowski A (2008) Chem Eng J 145:242–248

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper is supported by the Sectoral Operational Programme Human Resources Development (SOP HRD), financed from the European Social Fund and by the Romanian Government under the contract number POSDRU ID59323.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luminita Andronic.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andronic, L., Andrasi, D., Enesca, A. et al. The influence of titanium dioxide phase composition on dyes photocatalysis. J Sol-Gel Sci Technol 58, 201–208 (2011). https://doi.org/10.1007/s10971-010-2378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2378-3

Keywords

  • Titanium oxide
  • Sol–gel deposition
  • Photocatalysis
  • Dyes