Skip to main content
Log in

Polypropylene wax (PPw)/silica hybrid by in situ non-aqueous sol–gel process for preparation of PP/silica nanocomposites

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This paper presented a novel approach to prepare PP/silica nanocomposites. First, PPw-g-KH570 (γ-methacryloxypropyl trimethoxysilane) was obtained by pre-irradiation grafting method and characterized by FTIR and TGA. Then the non-aqueous sol–gel gelation kinetics of TEOS (tetraethoxysilane)-formic acid system in xylene was researched. Subsequently PPw/silica hybrid was obtained by in situ non-aqueous sol–gel reaction of TEOS in the presence of PPw-g-KH570 solution in xylene. Finally PP/silica nanocomposites were prepared by blending of PP matrix and PPw/silica hybrid. The mechanism of in situ formed PPw/silica hybrid was proposed. The morphology of PPw/silica hybrid and microstructures of PP/silica nanocomposites were characterized by TEM and SEM. The mechanical and thermal properties of PP/silica nanocomposites were also well studied by tensile tests and DSC. It was showed that the nanosilica particles were well dispersed in PPw/silica hybrid with the aid of grafting KH570 due to co-condensation by grafted KH570 and TEOS. PPw/silica hybrid was well dispersed in PP matrix with good compatibility and strong interactions. The resulted PP/silica nanocomposites possessed better performance than that of pure PP matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9:1302–1317

    Article  CAS  Google Scholar 

  2. Innocenzi P, Brusatin G (2001) Fullerene-based organic-inorganic nanocomposites and their applications. Chem Mater 13:3126–3139

    Article  CAS  Google Scholar 

  3. Gleiter H (1992) Nanostructured materials. Adv Mater 4:474–481

    Article  CAS  Google Scholar 

  4. Novak BM (1993) Hybrid nanocomposite materials-between inorganic glasses and organic polymers. Adv Mater 5:422–433

    Article  CAS  Google Scholar 

  5. Ou CF, Hsu MC (2007) Preparation and characterization of cyclo olefin copolymer (COC)/silica nanoparticle composites by solution blending. J Polym Res 14:373–378

    Article  CAS  Google Scholar 

  6. Hong RY, Fu HP, Zhang YJ, Liu L, Wang J, Li HZ, Zheng Y (2007) Surface-modified silica nanoparticles for reinforcement of PMMA. J Appl Polym Sci 105:2176–2184

    Article  CAS  Google Scholar 

  7. Pluta M, Paul MA, Alexandre M, Dubois P (2006) Plasticized polylactide/clay nanocomposites. I. The role of filler content and its surface organo-modification on the physico-chemical properties. J Polym Sci Part B Polym Phys 44:299–311

    Article  CAS  ADS  Google Scholar 

  8. Yudin VE, Divoux GM, Otaigbe JU, Svetlichnyi VM (2005) Synthesis and rheological properties of oligoimide/montmorillonite nanocomposites. Polymer 46:10866–10872

    Article  CAS  Google Scholar 

  9. Jana SC, Jain S (2001) Dispersion of nanofillers in high performance polymers using reactive solvents as processing aids. Polymer 42:6897–6905

    Article  CAS  Google Scholar 

  10. Wu CL, Zhang MQ, Rong MZ et al (2002) Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos Sci Technol 62:1327–1340

    Article  CAS  Google Scholar 

  11. Zhang H, Zhang Z, Friedrich K, Eger C (2006) Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater 54:1833–1842

    Article  CAS  Google Scholar 

  12. Muh E, Frey H, Klee JE, Mulhaupt R (2001) Organic-inorganic hybrid nanocomposites prepared by means of sol-gel condensation of bismethacrylatesilanes in reactive diluents. Adv Funct Mater 11:425–429

    Article  CAS  Google Scholar 

  13. Alam TM, Assink RA, Loy DA (1996) Hydrolysis and esterification in organically modified alkoxysilanes: a 29Si NMR investigation of methyltrimethoxysilane. Chem Mater 8:2366–2374

    Article  CAS  Google Scholar 

  14. Dubitsky Y, Zaopo A, Zannoni G, Zetta L (2000) 1H NMR study of the hydrolysis of vinyltrialkoxysilanes. Mater Chem Phys 64:45–53

    Article  CAS  Google Scholar 

  15. Altmann S, Pfeiffer J (2003) The hydrolysis/condensation behaviour of methacryloyloxyalkylfunctional alkoxysilanes: structure-reactivity relations. Monatsh Chem 134:1081–1092

    CAS  Google Scholar 

  16. Moore EP Jr, Larson GA (1996) Polypropylene handbook. Hanser, Munich

    Google Scholar 

  17. Dou QZ, Zhu XM, Peter K, Demco DE, Moller M, Melian C (2008) Preparation of polypropylene/silica composites by in situ sol–gel processing using hyperbranched polyethoxysiloxane. J Sol-Gel Sci Technol 48:51–60

    Article  CAS  Google Scholar 

  18. Sun DH, Zhang R, Liu ZM, Huang Y, Wang Y, He J, Han BX, Yang GY (2005) Polypropylene/silica nanocomposites prepared by in situ sol–gel reaction with the aid of CO2. Macromolecules 38:5617–5624

    Article  CAS  ADS  Google Scholar 

  19. Mizutani Y, Nago S (1999) Microporous polypropylene films containing ultrafine silica particles. J Appl Polym Sci 72:1489–1494

    Article  CAS  Google Scholar 

  20. Jain S, Goossens H, Picchioni F, Magusin P, Mezari B, Duin MV (2005) Synthetic aspects and characterization of polypropylene-silica nanocomposites prepared via solid-state modification and sol–gel reactions. Polymer 46:6666–6681

    Article  CAS  Google Scholar 

  21. Sharp KG (1994) A two-component, non-aqueous route to silica gel. J Sol-Gel Sci Technol 2:35–41

    Article  CAS  Google Scholar 

  22. Yazdani-Pedrama M, Vegaa H, Quijada R (2001) Melt functionalization of polypropylene with methyl esters of itaconic acid. Polymer 42:4751–4758

    Article  Google Scholar 

  23. Yang SJ, Song GJ, Zhao YG, Yang C, She XL (2007) Mechanism of a one-step method for preparing silane grafting and cross-linking polypropylene. Polym Eng Sci 47:1004–1008

    Article  CAS  Google Scholar 

  24. Jiao CM, Wang ZZ, Gui Z, Hu Y (2005) Silane grafting and crosslinking of ethylene-octene copolymer. Eur Polym J 41:1204–1211

    Article  CAS  Google Scholar 

  25. Blackadder DA, Le Poidevin GJ (1978) Dissolution of polypropylene in organic solvents: 4. Nature of the solvent. Polymer 19:483–488

    Article  CAS  Google Scholar 

  26. Moad G (1999) The synthesis of polyolefin graft copolymers by reactive extrusion. Prog Polym Sci 24:81–142

    Article  CAS  Google Scholar 

  27. Sun SS, Li CZ, Zhang L, Du HL, Burnell-Gray JS (2006) Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly(vinyl chloride) composites. Eur Polym J 42:1643–1652

    Article  CAS  Google Scholar 

  28. Jal PK, Sudarshan M, Saha A (2004) Synthesis and characterization of nanosilica prepared by precipitation method. Colloids Surf A Physicochem Eng Asp 240:173–178

    Article  CAS  Google Scholar 

  29. Tan XM, Xu YS, Wang CL (2006) Pre-irradiation-induced graft reaction of maleic anhydride onto polypropylene. Radiat Eff Defect S 161:529–535

    Article  CAS  Google Scholar 

  30. An YJ, Zhang ZJ, Bi WG, Wang YH, Tang T (2008) Characterization of high melt strength polypropylene synthesized via silane grafting initiated by in situ heat induction reaction. J Appl Polym Sci 110:3727–3732

    Article  CAS  Google Scholar 

  31. Demjen Z, Pukanszky B (1997) Effect of surface coverage of silane treated CaCO3 on the tensile properties of polypropylene composites. Polym Compos 18:741–747

    Article  CAS  Google Scholar 

  32. Wang Q, Xia HS, Zhang CH (2001) Preparation of polymer/inorganic nanoparticles composites through ultrasonic irradiation. J Appl Polym Sci 80:1478–1488

    Article  CAS  Google Scholar 

  33. Tan XM, Xu YS, Jia GW, Cai N (2009) Polypropylene/silica nanocomposites prepared by in situ melt ultrasonication. Polym Compos 30:835–840

    Article  CAS  Google Scholar 

  34. Svehlova V, Poloucek E (1994) Mechanical properties of talc-filled polypropylene: influence of filler content, filler particle size and quality of dispersion. Die Angew Makromol Chem 214:91–99

    Article  CAS  Google Scholar 

  35. He DY, Jiang BZ (1993) The elastic modulus of filled polymer composites. J Appl Polym Sci 49:617–621

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Chonglin Wang, Director of Tianjin Institute of Technical Physics, China, for supporting the pre-irradiation grafting work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongshen Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, J., Zhang, H., Cheng, G. et al. Polypropylene wax (PPw)/silica hybrid by in situ non-aqueous sol–gel process for preparation of PP/silica nanocomposites. J Sol-Gel Sci Technol 56, 300–309 (2010). https://doi.org/10.1007/s10971-010-2306-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2306-6

Keywords

Navigation