Journal of Sol-Gel Science and Technology

, Volume 55, Issue 3, pp 311–316 | Cite as

Magnetic properties of doped LaMnO3 ceramics obtained by a polymerizable complex method

  • Z. Branković
  • K. Đuriš
  • A. Radojković
  • S. Bernik
  • Z. Jagličić
  • M. Jagodič
  • K. Vojisavljevic
  • G. Branković
Original Paper

Abstract

Substituted lanthanum manganites with the general formula A1−xBxMnO3 (A = La, B = Ca, Sr…) have attracted a lot of attention due to their exceptional electric and magnetic properties. In this work, pure and Ca2+, Sr2+-doped LaMnO3 (LMO) with the concentrations of dopants 30% Ca2+ (LCMO), 30% Sr2+ (LSMO) and 15% Ca2+ + 15% Sr2+ (LCSMO) (in mol. %) were synthesized by polymerizable complex method. Bulk samples were prepared by sintering at 1300 °C for 4 h in oxygen atmosphere. It was found that sintering in oxygen atmosphere enables preparation of single phase ceramics with rhombohedral crystal structure. Chemically prepared fine, submicronic precursor powders provided uniform microstructure and grain size distribution in final ceramics. As a result, pure and doped LMO ceramics with excellent microstructural and magnetic properties were obtained. Depending on the composition, magnetic measurements showed high saturation magnetizations (up to 93 emu/g), with values of the Curie temperature in the range 180–390 K and magnetoresistance up to 67%.

Keywords

Lantanum manganite Sintering Oxygen atmosphere Magnetic properties 

References

  1. 1.
    Sun JZ, Krusin-Elbaum L, Gupta A, Gang X, Duncombe PR, Parkin SSP (1998) IBM J Res Dev 42:89–102CrossRefGoogle Scholar
  2. 2.
    Szymczak R, Czepelak M, Kolano R, Kolano-Burian A, Krzymanska B, Szymczak H (2008) J Mater Sci 43:1734–1739CrossRefADSGoogle Scholar
  3. 3.
    Islam MS, Hanh DT, Khan FA, Hakim MA, Minh DL, Hoang NN, Hai NH, Chay N (2009) Phys B Condens Matter 404:2495–2498CrossRefADSGoogle Scholar
  4. 4.
    Hu Z, Yang Y, Shang X, Pang H (2005) Mater Lett 59:1373–1377CrossRefGoogle Scholar
  5. 5.
    Hirano T, Purwanto H, Watanabe T, Akiyama T (2007) J Alloys Compd 441:263–266CrossRefGoogle Scholar
  6. 6.
    Jiang SP (2008) J Mater Sci 43:6799–6833CrossRefADSGoogle Scholar
  7. 7.
    Krkljus I, Brankovic Z, Djuris K, Vukotic V, Brankovic G, Bernik S (2008) Int J Appl Ceram Technol 5:548–556CrossRefGoogle Scholar
  8. 8.
    Nohara Y, Yamasaki A, Kobayashi S, Fujiwara T (2006) Phys Rev B 74:064417CrossRefADSGoogle Scholar
  9. 9.
    Malavasi L, Ritter C, Mozatti MC, Tealdi C, Islam MS, Azzoni CB, Flor G (2005) J Solid State Chem 178:2042–2049CrossRefADSGoogle Scholar
  10. 10.
    Zener C (1951) Phys Rev 82:403–405CrossRefADSGoogle Scholar
  11. 11.
    Grundy AN, Hallstedt B, Gauckler LJ (2004) Solid State Ionics 173:17–21CrossRefGoogle Scholar
  12. 12.
    Grundy AN, Chen M, Hallstedt B, Gauckler LJ (2005) J Phase Equilibria Diffusion 26:131–151Google Scholar
  13. 13.
    Horyn R, Zaleski AJ, Bukowska E, Sikora A (2004) J Alloys Compd 383:80–84CrossRefGoogle Scholar
  14. 14.
    Hueso LE, Rivadulla F, Sanchez RD, Caeiro D, Jardon C, Vazquez-Vazquez C, Rivas J, Lopez-Quintela MA (1998) J Magn Magn Mater 189:321–328CrossRefADSGoogle Scholar
  15. 15.
    Van Roosmalen JAM, Cordfunke EHP (1994) J Solid State Chem 110:106–108CrossRefADSGoogle Scholar
  16. 16.
    Roosmalen JAM, Van Vlaanderen P, Cordfunke EHP (1995) J Solid State Chem 114:516–523CrossRefGoogle Scholar
  17. 17.
    Maurin I, Barboux P, Lassailly I, Boilot JP (1998) Chem Mater 10:1727–1732CrossRefGoogle Scholar
  18. 18.
    Bernard C, Durand B, Verelst M, Lecante P (2004) J Mater Sci 39:2821–2826CrossRefADSGoogle Scholar
  19. 19.
    Zi ZF, Sun YP, Zhu XB, Yang ZR, Dai JM, Song WH (2009) J Magn Magn Mater 321:2378–2381CrossRefADSGoogle Scholar
  20. 20.
    Aono H, Tsuzaki M, Kawaura A, Sakamoto M, Traversa E, Sadaoka Y (2001) J Am Ceram Soc 84:969–975CrossRefGoogle Scholar
  21. 21.
    Lamas DG, Caneiro A, Niebieskikwiat D, Sanches RD, Garcia D, Alascio B (2002) J Magn Magn Mater 241:207–213CrossRefADSGoogle Scholar
  22. 22.
    Kakihana M (1996) J Sol-Gel Sci Technol 6:7–55CrossRefGoogle Scholar
  23. 23.
    Pechini MP (1967) US Patent 3 330 697Google Scholar
  24. 24.
    Campagnoli E, Tavares A, Fabbrini L, Rosseti I, Dubitsky YA, Zaopo A, Forni L (2005) Appl Catal B: Environ 55:133–139CrossRefGoogle Scholar
  25. 25.
    Dezanneau G, Sin A, Roussel H, Vincent H, Audier M (2002) Solid State Commun 121:133–137CrossRefADSGoogle Scholar
  26. 26.
    Sin A (2003) J Sol-Gel Sci Technol 26:541–545CrossRefGoogle Scholar
  27. 27.
    Branković G, Djuriš K, Jagličić Z, Jagodič M, Branković Z (2009) Adv Appl Ceram 108:267–272CrossRefGoogle Scholar
  28. 28.
    Berenov AV, MacManus-Driscoll JL, Kilner JA (1999) Solid State Ionics 122:41–49CrossRefGoogle Scholar
  29. 29.
    Roosmalen JAM, Cordfunke EHP, Huijsmans JPP (1993) Solid State Ionics 66:285–293CrossRefGoogle Scholar
  30. 30.
    Chen HZ, Young LS, Chen YC, Horng L, Shi JB (2003) Phys B 329–333:729–730CrossRefGoogle Scholar
  31. 31.
    Ferris V, Goglio G, Brohan L, Joubert O, Molinie P, Ganne M, Dordor P (1997) Mater Res Bull 32:763–777CrossRefGoogle Scholar
  32. 32.
    Itoh M, Shimura T, Yu JD, Hayashi T, Inaguma Y (1995) Phys Rev B 52:12522CrossRefADSGoogle Scholar
  33. 33.
    Raj Sankar C, Joy PA (2005) Phys Rev B 72:024405CrossRefADSGoogle Scholar
  34. 34.
    Dhahri R, Halouni F (2004) J Alloys Compd 381:21–25CrossRefGoogle Scholar
  35. 35.
    Sahana M, Hegde MS, Shivakumara C, Prasad V, Subramanyam SV (1999) J Solid State Chem 148:342–346CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Z. Branković
    • 1
  • K. Đuriš
    • 1
  • A. Radojković
    • 1
  • S. Bernik
    • 2
  • Z. Jagličić
    • 3
  • M. Jagodič
    • 3
  • K. Vojisavljevic
    • 1
  • G. Branković
    • 1
  1. 1.Institute for Multidisciplinary ResearchBelgradeSerbia
  2. 2.Jožef Stefan InstituteLjubljanaSlovenia
  3. 3.Institute of Mathematics, Physics and MechanicsLjubljanaSlovenia

Personalised recommendations