Skip to main content
Log in

Effect of mesoporosity of vanadium oxide prepared by sol–gel process as cathodic material evaluated by cyclability during Li+ insertion/deinsertion

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The effect of pore structure on the behavior of lithium intercalation into an electrode containing porous V2O5 film has been investigated and compared with the electrode containing a non-porous V2O5 film. X-ray diffraction patterns indicate a lamellar structure for both materials. Nitrogen adsorption isotherms, t-plot method, and Scanning Electronic Microscopy show that the route employed for the preparation of mesoporous V2O5 was successful. The electrochemical performance of these matrices as lithium intercalation cathode materials was evaluated. The porous material reaches stability after several cycles more easily compared with the V2O5 xerogel. Lithium intercalation into the porous V2O5 film electrode is crucially influenced by pore surface and film surface irregularity, in contrast with the non-porous surface of the V2O5 xerogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tipton AL, Passerini S, Owens BB, Smyrl WH (1996) J Electrochem Soc 143:3473

    Article  CAS  Google Scholar 

  2. Lira-Cantu M, Gomez-Romero P (1999) J Electrochem Soc 146:2029

    Article  CAS  Google Scholar 

  3. Huguenin F, Ferreira M, Zucolotto V, Nart FC, Torresi RM, Oliveira ON (2004) Chem Mater 16:2293

    Article  CAS  Google Scholar 

  4. Posudievsky OY, Biskulova SA, Pokhodenko VD (2004) J Mater Chem 14:1419

    Article  CAS  Google Scholar 

  5. Park NG, Ryu KS, Park YJ, Kang MG, Kim DK, Kang SG, Kim KM, Chang SH (2002) J Power Sources 103:273

    Article  CAS  Google Scholar 

  6. Gimenes MA, Profeti LPR, Lassali TAF, Graeff CFO, Oliveira HP (2001) Langmuir 17:1975

    Article  CAS  Google Scholar 

  7. Wang Y, Cao GZ (2006) Electrochim Acta 51:4865

    Article  CAS  Google Scholar 

  8. Scarminio J, Talledo A, Andersson AA, Passerini S, Decker F (1993) Electrochim Acta 38:1637

    Article  CAS  Google Scholar 

  9. Soudan P, Pereira-Ramos JP, Farcy J, Gregoire G, Baffier N (2000) Solid State Ion 135:291

    Article  CAS  Google Scholar 

  10. Coustier F, Hill J, Owens BB, Passerini S, Smyrl WH (1999) J Electrochem Soc 146:1355

    Article  CAS  Google Scholar 

  11. Coustier F, Lee JM, Passerini S, Smyrl WH (1999) Solid State Ion 116:279

    Article  CAS  Google Scholar 

  12. Lee J-K, Kim G-P, Song IK, Baeck S-H (2009) Electrochem Commun 11:1571

    Article  CAS  Google Scholar 

  13. Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD (1998) Nature 396:152

    Article  CAS  ADS  Google Scholar 

  14. Liu P, Lee SH, Tracy CE, Yan YF, Turner JA (2002) Adv Mater 14:27

    Article  CAS  Google Scholar 

  15. Santato C, Odziemkowski M, Ulmann M, Augustynski J (2001) J Am Chem Soc 123:10639

    Article  CAS  PubMed  Google Scholar 

  16. Soler-Illia GJDA, Crepaldi EL, Grosso D, Sanchez C (2003) Curr Opin Colloid Interface Sci 8:109

    Article  CAS  Google Scholar 

  17. Grygar T, Capek L, Adam J, Machovic V (2009) J Electroanal Chem 633:127

    Article  CAS  Google Scholar 

  18. Liu P, Lee SH, Tracy CE, Turner JA, Pitts JR, Deb SK (2003) Solid State Ion 165:223

    Article  CAS  Google Scholar 

  19. Yu AS, Frech R (2002) J Electrochem Soc 149:A99

    Article  CAS  Google Scholar 

  20. Gharbi N, Sanchez C, Livage J, Lemerle J, Nejem L, Lefebvre J (1982) Inorg Chem 21:2758

    Article  CAS  Google Scholar 

  21. Livage J (1991) Chem Mater 3:578

    Article  CAS  Google Scholar 

  22. Li ZF, Ruckenstein E (2002) Langmuir 18:6956

    Article  CAS  Google Scholar 

  23. Stine KE (1970) Beckman infrared laboratory manual. Beckman Instruments Inc, New York

  24. Giorgetti M, Passerini S, Smyrl WH, Berrettoni M (2000) Inorg Chem 39:1514

    Article  CAS  PubMed  Google Scholar 

  25. Petkov V, Trikalitis PN, Bozin ES, Billinge SJL, Vogt T, Kanatzidis MG (2002) J Am Chem Soc 124:10157

    Article  CAS  PubMed  Google Scholar 

  26. Balderas-Tapia L, Hernandez-Perez I, Schacht P, Cordova IR, Aguilar-Rios GG (2005) Catal Today 107–108:371

    Article  Google Scholar 

  27. Sanchez C, Livage J, Lucazeau G (1982) J Raman Spectrosc 12:68

    Article  CAS  ADS  Google Scholar 

  28. Abello L, Lucazeau G (1984) J Chim Phys 81:539

    CAS  Google Scholar 

  29. Abello L, Husson E, Repelin Y, Lucazeau G (1985) J Solid State Chem 56:379

    Article  CAS  ADS  Google Scholar 

  30. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London

    Google Scholar 

  31. Wu ZG, Zhao YX, Liu DS (2004) Microporous Mesoporous Mater 68:127

    Article  CAS  Google Scholar 

  32. Toba M, Mizukami F, Niwa S, Sano T, Maeda K, Annila A, Komppa V (1994) J Mol Catal 94:85

    Article  CAS  Google Scholar 

  33. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  34. Noh JASA (1986) J Colloid Interface Sci 27:531

    Google Scholar 

  35. Sing KSW (1968) Chem Ind 44:1520

    Google Scholar 

  36. Gommes CJ, Blacher S, Pirard JP (2005) Langmuir 21:1703

    Article  CAS  PubMed  Google Scholar 

  37. Guerra EM, Ciuffi KJ, Oliveira HP (2006) J Solid State Chem 179:3814

    Article  CAS  ADS  Google Scholar 

  38. Chao ZS, Ruckenstein E (2002) Langmuir 18:8535

    Article  CAS  Google Scholar 

  39. Chao ZS, Ruckenstein E (2003) Langmuir 19:4235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the fellowship provided by CAPES. FAPESP and CNPq are acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herenilton P. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerra, E.M., Cestarolli, D.T. & Oliveira, H.P. Effect of mesoporosity of vanadium oxide prepared by sol–gel process as cathodic material evaluated by cyclability during Li+ insertion/deinsertion. J Sol-Gel Sci Technol 54, 93–99 (2010). https://doi.org/10.1007/s10971-010-2162-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2162-4

Keywords

Navigation