Skip to main content
Log in

Sol gel derived Pd/Al2O3–ZrO2 as catalysts for methane combustion: effect of zirconium loading

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of Pd/Al2O3–ZrO2 materials have been prepared via sol gel method as an attractive route to obtain more homogeneous binary oxides Al2O3–ZrO2. A Zr loading between 2 and 15 wt% was used to investigate the Zr promotion of Pd/Al2O3 materials. The prepared catalysts were calcined at two different temperatures. Very interesting results have been obtained at low zirconium content. A small amount of Zr is seen to be sufficient to stabilize the activity and to obtain good catalytic performances with developed textural properties compared to conventional catalysts used to oxidize methane. The increase of the zirconium loading is seen to decrease the catalytic activity may be due to the development of tetragonal zirconia phase detected by XRD. Similar effect has been observed after heating catalysts at high temperatures. A loss in BET surface area and in metal dispersion has been also observed for zirconium rich catalysts. A contradictory effect on textural and structural properties is seen after their calcination at 700 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. König D, Weber WH, Poindexter BD, McBride JR, Graham GW, Otto K (1994) Catal Lett 29:329

    Article  Google Scholar 

  2. Sidwell RW, Zhu HY, Kibler BA, Kee RJ, Wikham DT (2003) Appl Catal A 255:279

    Article  CAS  Google Scholar 

  3. Eguchi K, Arai H (1996) Catal Today 29:379

    Article  CAS  Google Scholar 

  4. Kikuchi R, Takeda K, Sekizawa K, Sasaki K, Eguchi K (2001) Appl Catal A 218:101

    Article  CAS  Google Scholar 

  5. Takeguchi T, Takeoh O, Aoyamab S, Uedab J, Kikuchi R, Eguchi K (2003) Appl Catal A 252:205

    Article  CAS  Google Scholar 

  6. Chouldhary TV, Banerjee S, Chouldhary VR (2002) Appl Catal A 234:1

    Article  Google Scholar 

  7. Gelin P, Primet M (2002) Appl Catal B 39:1

    Article  CAS  Google Scholar 

  8. Sekizawa K, Widjaja H, Maeda S, Ozawa Y, Eguchi K (2000) Catal Today 59:69

    Article  CAS  Google Scholar 

  9. Fujimoto K, Ribeiro FH, Avalos-Borja M, Iglesia E (1998) J Catal 179:431

    Article  CAS  Google Scholar 

  10. Müller CA, Maciejewski M, Koeppel RA, Baiker A (1997) J Catal 166:36

    Article  Google Scholar 

  11. Nomura K, Noro K, Nakamura Y, Yoshida H, Satsuma A, Hattori T (1999) Catal Lett 58:127

    Article  CAS  Google Scholar 

  12. Fujimoto K, Ribeiro FH, Avalos-Borja M, Iglesia E (1998) J Catal 179:431

    Article  CAS  Google Scholar 

  13. Müller CA, Maciejewski M, Koeppel RA, Baiker A (1999) Catal Today 47:245

    Article  Google Scholar 

  14. Imai T, Tsukuda I, Yasutake S (1993) Japanese Patent 05269381 to Mitsubishi Heavy Ind Ltd

  15. Pivot J-C (1996) DE 19612430 to application des Gaz S.A

  16. Wang Y, Sun Y, Gao Y, Shen S (1999) Cn 1224047 to Shanxi Institute of Coal Chemistry. Chinese Academy of Sciences, ROC

    Google Scholar 

  17. Chary KVR, Kumar CP, Naresh D, Bahaskar T, Sakata Y (2006) J Mol Catal A 243:149

    Article  CAS  Google Scholar 

  18. Farmer SC, Sayir A (2002) Eng Fract Mech 69:1015

    Article  Google Scholar 

  19. Lakshmi JL, Ihasz NJ, Miller JB (2001) J Mol Catal A 165:199

    Article  CAS  Google Scholar 

  20. Dominguez JM, Hernandez JL, Sandoval G (2000) Appl Catal A 197:119

    Article  CAS  Google Scholar 

  21. Larese C, Campos-Martin JM, Calvino JJ, Blanco G, Fierro JLG, Kang ZC (2002) J Catal 208:467

    Article  CAS  Google Scholar 

  22. Ward D, Ko A (1995) E. I. Ind Eng Chem Res 34:421

    Google Scholar 

  23. De Farias RF, Arnold U, Martínez SU, Jannini MJDM, Airoldi C (2003) J Phys Chem Solid 64:2385

    Article  ADS  Google Scholar 

  24. Schmal M, Souza MMVM, Aranda DAG, Perez CAC (2001) Stud Surf Sci Catal 132:695

    Article  CAS  Google Scholar 

  25. Guo Y, Lu G, Zh Zhang, Jiang L, Wang X, Sh Li, Zhang B, Niu J (2007) Catal Today 126:441

    Article  CAS  Google Scholar 

  26. Schaper H, Doesburg EBM, Van Reijen LL (1983) Appl Catal A 7(2):211

    Article  CAS  Google Scholar 

  27. Yoshida H, Nakajima T, Yazawa Y, Hattori T (2007) Appl Catal B 71:70

    Article  CAS  Google Scholar 

  28. Ayari F, Mhamdi M, Delahay G, Ghorbel A (2009) Sol Gel Sci Technol 49:170

    Article  CAS  Google Scholar 

  29. Oh Se H, Mitchell PJ, Stiewert RM (1991) J Catal 132(2):287

    Article  Google Scholar 

  30. Burch R, Urbano FJ, Loader PK (1995) Appl Catal A 123:173

    Article  CAS  Google Scholar 

  31. Fessi S, Ghorbel A, Rives A, Hubaut R (2000) Stud Surf Sci Catal 130:3795

    Article  Google Scholar 

  32. Alrai H, Fukuzawa H (1995) Catal Today 26:217

    Article  Google Scholar 

  33. Pecchi G, Reyes P, Zamora R, Lo′pez T, Go′mez R (2005) J Chem Technol Biotechnol 80:268

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Amairia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amairia, C., Fessi, S. & Ghorbel, A. Sol gel derived Pd/Al2O3–ZrO2 as catalysts for methane combustion: effect of zirconium loading. J Sol-Gel Sci Technol 54, 29–35 (2010). https://doi.org/10.1007/s10971-010-2153-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2153-5

Keywords

Navigation