Skip to main content
Log in

The catalytic performances of silica supported aluminum, gallium and indium for the tert-butylation of aromatics

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

RHA-Al, RHA-Ga and RHA-In catalysts were synthesized by the direct incorporation of aluminum, gallium and indium ions, respectively, into rice husk ash (RHA) silica at room temperature using the sol–gel method. The prepared catalysts were characterized by physicochemical methods, viz. N2-adsorption, XRD, FT-IR, SEM-EDX, ICP-MS and Solid-state NMR. These catalysts were used to study the tert-butylation of benzene (Bz) and some substituted benzenes with tert-butyl chloride (TBC). The reaction was proposed to proceed initially through the radical mechanism and subsequently the tert-butyl cation was formed, which in turn attacks the benzene ring for the formation of tert-butyl benzene (TBB) and di-tert-butyl benzene (DTBB) via the SN1 mechanism (main reaction). However, a proton elimination reaction (side reaction) also occurred, resulting in the formation of isobutene dimers (IBD) and isobutene trimers (IBT). The extent of these side products were found to decrease significantly with time, indicating the reversibility of the oligomerization reactions. The catalysts were stable against leaching and were reusable several times but with observable drop in catalytic activity. RHA-Ga lost almost 20% of its activity after each run, whereas, RHA-In was stable until the 3rd run and then lost ~13% of its activity at the 5th run. The deactivation was suggested to be induced by the poisoning effect of the bulky side products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tashiro M (1979) Synthesis 12:921–936

    Article  Google Scholar 

  2. Saleh SA, Tashtoush HI (1998) Tetrahedron 54:14157–14177

    Article  CAS  Google Scholar 

  3. Beck JS, Haag WO (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 5. Wiley-VCH, Weinheim

    Google Scholar 

  4. Hearne GW, Evans TW, Buls VW, Schwarzer CG (1955) Ind Eng Chem 47:2311–2313

    Article  CAS  Google Scholar 

  5. Ozokwelu ED (1997) Kirk-Othmer Encyclopedia Chem Technol 24:350–389

    Google Scholar 

  6. Peck AM, Hornbuckle KC (2004) Environ Sci Technol 38:367–372

    Article  CAS  PubMed  Google Scholar 

  7. Peck AM, Hornbuckle KC (2006) Atmos Environ 40:6101–6111

    Article  CAS  Google Scholar 

  8. Yamato T, Hideshima C, Miyazawa A, Tashiro M, Prakash GKS, Olah GA (1990) Catal Lett 6:345–348

    Article  CAS  Google Scholar 

  9. Selvaraj M, Jeon SH, Han J, Sinha PK, Lee TG (2005) Appl Catal A 286:44–51

    Article  CAS  Google Scholar 

  10. Selvaraj M, Lee TG (2005) Microporous Mesoporous Mater 85:59–74

    Article  CAS  Google Scholar 

  11. Mravec D, Zavadan P, Kaszonyi A, Joffre J, Moreau P (2004) Appl Catal A 257:49–55

    Article  CAS  Google Scholar 

  12. Bidart AMF, Borges APS, Nogueira L, Lachter ER, Mota CJA (2001) Catal Lett 75:155–157

    Article  CAS  Google Scholar 

  13. Bidart AMF, Borges APS, Chagas HC, Nogueira L, Lachter ER, Mota CJA (2006) J Braz Chem Soc 17:758–762

    Article  CAS  Google Scholar 

  14. Hino M, Arata K (1977) Chem Lett 6:277–278

    Article  Google Scholar 

  15. Correa RJ, Mota CJA (2003) Appl Catal A 255:255–264

    Article  CAS  Google Scholar 

  16. Correa RJ, Mota CJA (2002) Phys Chem Chem Phys 4:4268–4274

    Article  CAS  Google Scholar 

  17. Haw JF, Richardson BR, Oshiro IS, Lazo ND, Speed JA (1989) J Am Chem Soc 111:2052–2058

    Article  CAS  Google Scholar 

  18. Haw JF, Nicholas JB, Xu T, Beck LW, Ferguson DB (1996) Acc Chem Res 29:259–267

    Article  CAS  Google Scholar 

  19. Golombok M, Jde Bruijn (2000) Ind Eng Chem Res 39:267–271

    Article  CAS  Google Scholar 

  20. Ahmed AE, Adam F (2007) Microporous Mesoporous Mater 103:284–295

    Article  CAS  Google Scholar 

  21. Ahmed AE, Adam F (2009) Microporous Mesoporous Mater 118:35–43

    Article  CAS  Google Scholar 

  22. Adam F, Ahmed AE (2008) Chem Eng J 145:328–334

    Article  CAS  Google Scholar 

  23. Choudhary VR, Jana SK (2002) Appl Catal A 224:51–62

    Article  CAS  Google Scholar 

  24. Szegedi À, Kónya Z, Méhn D, Solymár E, Pál-Borbély G, Horváth ZE, Biró LP, Kiricsi I (2004) Appl Catal A 272:257–266

    Article  CAS  Google Scholar 

  25. Lee JD (1977) A new concise inorganic chemistry. Van Nostrand Reinhold, Berkshire

    Google Scholar 

  26. Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  27. Tuel A, Gontier S (1996) Chem Mater 8:114–122

    Article  CAS  Google Scholar 

  28. Tuel A (1999) Microporous Mesoporous Mater 27:151–169

    Article  CAS  Google Scholar 

  29. Okumura K, Nishigaki K, Niwa M (2001) Microporous Mesoporous Mater 44–45:509–516

    Article  Google Scholar 

  30. Zhang W, Ratcliffe CI, Moudrakovski IL, Tse JS, Mou CY, Ripmeester JA (2005) Microporous Mesoporous Mater 79:195–203

    Article  CAS  Google Scholar 

  31. Timken HKC, Oldfield E (1987) J Am Chem Soc 109:7669–7673

    Article  CAS  Google Scholar 

  32. Jarry B, Launay F, Nogier JP, Montouillout V, Gengembre L, Bonardet JL (2006) Appl Catal A 309:177–186

    Article  CAS  Google Scholar 

  33. Fricke R, Kosslick H, Lischke G, Richter M (2000) Chem Rev 100:2303–2406

    Article  CAS  PubMed  Google Scholar 

  34. Chatterjee M, Bhattcharya D, Hayashi H, Ebina T, Onodera Y, Nagase T, Sivasanker S, Iwasaki T (1998) Microporous Mesoporous Mater 20:87–91

    Article  CAS  Google Scholar 

  35. He N, Bao S, Xu Q (1998) Appl Catal A 169:29–36

    Article  CAS  Google Scholar 

  36. Salavati-Niasari M, Hasanalian J, Najafian H (2004) J Mol Catal A 209:209–214

    Article  CAS  Google Scholar 

  37. Chowdhuri AR, Zhang J, Gamota DR (2003) Semiconductor film and process for its preparation. US Patent 6541300

  38. Smith MB, March J (1985) March’s advanced organic chemistry: reactions, mechanisms, and structure. Wiley, New York

    Google Scholar 

  39. Daly GM, Pithawalla YB, Yu Z, El-Shall MS (1995) Chem Phys Lett 237:97–105

    Article  CAS  ADS  Google Scholar 

  40. Arends IWCE, Sheldon RA (2001) Appl Catal A 212:175–187

    Article  CAS  Google Scholar 

  41. Sivasanker S (2002) In: Viswanathan B, Sivasanker S, Ramaswamy AV (eds) Catalysis principles and applications. Narosa publishing house, New Delhi

    Google Scholar 

  42. Williams C, Makarova MA, Malysheva LV, Paukshtis EA, Talsi EP, Thomas JM, Zamaraev KI (1991) J Catal 127:377–392

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Malaysian Government, for the E-Science Fund grant (Project No.: 03-01-05-SF 0040) and the RU grant (Ac. No.: 1001/PKIMIA/814019) which partly supported this work. We also thank the Sudan University of Science & Technology for the study leave to Dr. Adil Elhag Ahmed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farook Adam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, A.E., Adam, F. The catalytic performances of silica supported aluminum, gallium and indium for the tert-butylation of aromatics. J Sol-Gel Sci Technol 54, 9–18 (2010). https://doi.org/10.1007/s10971-010-2151-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2151-7

Keywords

Navigation