Skip to main content

Sol–gel reactions of titanium alkoxides and water: influence of pH and alkoxy group on cluster formation and properties of the resulting products

Abstract

In this work the effect of pH and the titanium precursor on the cluster and particle formation during titanium alkoxide based sol–gel processes was investigated using electrospray ionization mass spectrometry (ESI-MS) and dynamic light scattering (DLS). The influence of pH and the titanium precursor on the particle size, morphology, crystallinity and chemical composition of the resulting particles were investigated using differentiel scanning calometry (DSC), X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), BET-adsorption isotherms and high resolution transmission electron microscopy (HR-TEM). ESI-MS investigation of the titanium clusters present during the nucleation and growth period showed that the number of titanium atoms in the clusters varied dependent on the alkoxide used. Moreover, it was found that the titanium clusters formed using titanium tetraethoxide (TTE) were smaller than the clusters formed by titanium tetraisopropoxide (TTIP) and titanium tetrabutoxide (TTB) under similar conditions. pH was not found to influence the nature of the titanium clusters present in the sol–gel solution. HR-TEM investigation of the TiO2 particles prepared at pH 7 and 10 showed that the primary particle size of the particles was around 3 nm. However, it was found that these primary particles aggregated to form larger secondary particles in the size order of 300–500 nm range. At pH 3 the particles grew significantly during the drying process due to destabilization of the colloidal solution leading to the formation of a gel. The highest specific surface area was found for particles synthesized under neutral or alkaline conditions based on TTIP. XRD analysis of the TiO2 particles showed that the particles synthesized at 25 °C were amorphous. First after heating the samples to above 300 °C the formation of anatase were observed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Cristoni S, Armelao L, Gross S, Tondello E, Traldi P (2000) Rapid Commun Mass Spectrom 14:662–668

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Seraglia R, Armelao L, Cristoni S, Gross S, Tondello E, Traldi P (2003) Rapid Commun Mass Spectrom 17:2649–2654

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Cristoni C, Traldi P, Armelao L, Gross S, Tondello E (2001) Rapid Commun Mass Spectrom 15:386–392

    Article  CAS  Google Scholar 

  4. 4.

    Brinker CJ, Scherer GW (1990) Sol-gel science, the physics and chemistry of sol-gel processing. Academic Press, San Diego

    Google Scholar 

  5. 5.

    Blanchard J (1997) PhD Thesis, Universite′ Pierre et Marie Curie

  6. 6.

    Soloviev A, Tufue R, Sanchez C, Kanaev AV (2001) J Phys Chem B 105:4175–4180

    Article  CAS  Google Scholar 

  7. 7.

    Soloviev A, Søgaard EG (2006) J Mater Sci 41:6159–6161

    Article  CAS  ADS  Google Scholar 

  8. 8.

    Rozes L, Steunou N, Fornasieri G, Sanchez C (2006) Monatshefte für Chemie 137:501–528

    Article  CAS  Google Scholar 

  9. 9.

    Blanchard J, Ribot F, Sanchez C, Bellot P-V, Trokiner A (2000) J Non-crystal solids 265:83–97

    Article  CAS  ADS  Google Scholar 

  10. 10.

    Soloviev A, Ivanov D, Tufeu R, Kanaev AV (2001) J Mater Sci Lett 20:905–906

    Article  CAS  Google Scholar 

  11. 11.

    Soloviev A, Jensen H, Søgaard EG (2003) J Mater Sci 38:3315–3318

    Article  CAS  Google Scholar 

  12. 12.

    Campostrini R, Carturan G, Pelli B, Traldi P (1989) J Non-Cryst Solids 108:143

    Article  CAS  ADS  Google Scholar 

  13. 13.

    Campostrini R, Carturan G, Sorarù G, Traldi P (1989) J Non-Cryst Solids 108:315

    Article  CAS  ADS  Google Scholar 

  14. 14.

    Cristoni S, Armelao L, Tondello E, Traldi P (1999) J Mass Spectrom 34:1380–1382

    Article  PubMed  Google Scholar 

  15. 15.

    Kallala K, Sanchez C, Cabana B (1992) J Non-crystal Solids 147–148:189–193

    Article  Google Scholar 

  16. 16.

    Marchisio DL, Omegna F, Barresi AA, Bowen P (2008) Ind Eng Chem Res 47:7202–7210

    Article  CAS  Google Scholar 

  17. 17.

    Gaun B, Lu W, Fang J, Cole RB (2007) J Am Soc Mass Spectrom 18:517–524

    Article  Google Scholar 

  18. 18.

    Kang M, Lee S-Y, Chung C-H, Cho SM, Han GY, Kim B-W, Yoon KJ (2001) J Photochem Photobiol A 144, 2–3, 185–191

    Google Scholar 

  19. 19.

    Liu H, Yang W, Ma Y, Cao Y, Yao J, Zhang J, Hu T (2003) Langmuir 19:3001–3005

    Article  CAS  Google Scholar 

  20. 20.

    Yu J, Zhao X, Zhao Q (2000) Thin Solid Films 379:7–14

    Article  CAS  ADS  Google Scholar 

  21. 21.

    Urlaub R, Posset U, Thull R (2000) J Non-crystal Solids 265:276–284

    Article  CAS  ADS  Google Scholar 

  22. 22.

    Velasco M, Rubio F, Rubio J, Oteo JL (1999) Spec Lett 32(2):289–304

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erik G. Søgaard.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simonsen, M.E., Søgaard, E.G. Sol–gel reactions of titanium alkoxides and water: influence of pH and alkoxy group on cluster formation and properties of the resulting products. J Sol-Gel Sci Technol 53, 485–497 (2010). https://doi.org/10.1007/s10971-009-2121-0

Download citation

Keywords

  • TiO2
  • Solgel process
  • ESI-MS
  • DLS
  • Particle morphology