Skip to main content
Log in

Structural evolution and magnetic properties of SrFe12O19 nanofibers by electrospinning

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The SrFe12O19/poly (vinyl pyrrolidone) (PVP) composite fiber precursors were prepared by the sol-gel assisted electrospinning with ferric nitrate, strontium nitrate and PVP as starting reagents. Subsequently, the M-type strontium ferrite (SrFe12O19) nanofibers were derived from calcination of these precursors at 750–1,000 °C.The composite precursors and strontium ferrite nanofibers were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. The structural evolution process of strontium ferrite consists of the thermal decomposition and M-type strontium ferrite formation. After calcined at 750 °C for 2 h the single M-type strontium ferrite phase is formed by reactions of iron oxide and strontium oxide produced during the precursor decomposition process. The nanofiber morphology, diameter, crystallite size and grain morphology are mainly influenced by the calcination temperature and holding time. The SrFe12O19 nanofibers characterized with diameters of around 100 nm and a necklace-like structure obtained at 900 °C for 2 h, which is fabricated by nanosized particles about 60 nm with the plate-like morphology elongated in the preferred direction perpendicular to the c-axis, show the optimized magnetic property with saturation magnetization 59 A m2 kg−1 and coercivity 521 kA m−1. It is found that the single domain critical size for these M-type strontium ferrite nanofibers is around 60 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jahn L, Muller HG (1969) The coercivity of hard ferrite single crystal. Phys Status Solid A35(2):723–730

    Article  Google Scholar 

  2. Castaneda SP, Martńez JR, Ruiz F et al (2002) Magnetic properties enhancement of M-Ba ferrites embedded in a SiO2 matrix. J Magn Magn Mater 250:160–163

    Article  ADS  Google Scholar 

  3. Dho J, Lee EK, Park JY et al (2005) Effects of the grain boundary on the coercivity of barium ferrite BaFe12O19. J Magn Magn Mater 285(1–2):164–168

    Article  ADS  CAS  Google Scholar 

  4. Nataraj SK, Kim BH, dela Cruz M (2009) Free standing thin webs of porous carbon nanofibers of polyacrylonitrile containing iron-oxide by electrospinning. Mater Lett 63:218–220

    Article  CAS  Google Scholar 

  5. Shao CL, Guan HY, Liu YC (2004) Preparation of Mn2O3 and Mn3O4 nanofibers via anelectrospinning technique. J Solid State Chem 177:2628–2631

    Article  ADS  CAS  Google Scholar 

  6. Lange H, Sioda M, Huczko A et al (2003) Nanocarbon production by arc discharge in water. Carbon 41(8):1617–1623

    Article  CAS  Google Scholar 

  7. Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348):208–211

    Article  PubMed  ADS  CAS  Google Scholar 

  8. Yin LW, Bando Y, Zhu YC et al (2005) Single-crystalline AlN nanotubes with carbon-layer coatings on the outer and inner surfaces via a multiwalled-carbon-nanotube-template-induced route. Adv Mater 17(2):213–217

    Article  CAS  Google Scholar 

  9. Wang WZ, Liu YK, Xu CK et al (2002) Synthesis of NiO nanorods by a novel simple precursor thermal decomposition approach. Chem Phys Lett 362(1–2):119–122

    Article  ADS  CAS  Google Scholar 

  10. Ju YW, Park JH, Jung HR et al (2008) Electrospun MnFe2O4 nanofibers: preparation and morphology. Compos Sci Technol 68(7–8):1704–1709

    Article  CAS  Google Scholar 

  11. Li D, McCann JT, Xia YN et al (2006) Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc 89(6):1861–1869

    Article  CAS  Google Scholar 

  12. Xiang J, Shen XQ, Song FZ et al. (2009) Fabrication and magnetic properties of Ni0.5Zn0.5Fe2O4 nanofibers by electrospinning. Chin Phys C (In Press)

  13. Sun Y, Li JY, Tan Y et al (2009) Fabrication of aluminum nitride (AlN) hollow fibers by carbothermalreduction and nitridation of electrospun precursor fibers. J Alloys Compd 471(1–2):400–403

    Article  CAS  Google Scholar 

  14. Wu KH, Shin YM, Yang CC et al (2006) Preparation and characterization of bamboo charcoal/Ni0.5Zn0.5Fe2O4 composite with core-shell structure. Mater Lett 60(21–22):2707–2710

    Article  CAS  Google Scholar 

  15. Hsuan FY, Pei CL (2006) Effects of pH and calcination temperatures on the formation of citrate-derived hexagonal barium ferrite particles. J Alloys Compd 416(1–2):222–227

    Google Scholar 

  16. Sivakumar M, Gedanken A, Thong W (2004) Nanophase formation of strontium hexaferrite fine powder by the sonochemical method using Fe (CO)5. J Magn Magn Mater 268(1–2):95–104

    Article  ADS  CAS  Google Scholar 

  17. García-Cerda LA, Rodríguez-Fernández OS, Reséndiz-Hernández PJ (2004) Study of SrFe12O19 synthesized by the sol–gel method. J Alloys Compd 369:182–184

    Article  CAS  Google Scholar 

  18. Wang J, Zeng C (2004) Growth of SrFe12O19 nanowires under an induced magnetic field. J Cryst Growth 270:729–733

    Article  ADS  CAS  Google Scholar 

  19. Stoner EC, Wohlfarth EP (1991) A mechanism of magnetic hysteresis in heterorgeneous alloys. IEEE Trans Magn 27(4):3475–3518

    Article  ADS  CAS  Google Scholar 

  20. Maaz K, Mumtaz A, Hasanain SK et al (2007) Synthesis and magnetic properties of cobalt (CoFe2O4) nanoparticles prepared by wet chemical route. J Magn Magn Mater 308(2):289–295

    Article  ADS  CAS  Google Scholar 

  21. Lin CS, Hwang CC, Huang TH et al (2007) Fine powders of SrFe12O19 with SrTiO3 additive prepared via aquasi-dry combustion synthesis route. Mater Sci Eng B139:24–36

    Article  CAS  Google Scholar 

  22. Nawathey-Dikshit R, Shinde SR, Ogale SB et al (1996) Synthesis of single domain strontium ferrite powder by pulsed laser ablation. Appl Phys Lett 68(24):3491

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 50674048) and China Postdoctoral Science Foundation (Grant No. 20080431069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangqian Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, X., Liu, M., Song, F. et al. Structural evolution and magnetic properties of SrFe12O19 nanofibers by electrospinning. J Sol-Gel Sci Technol 53, 448–453 (2010). https://doi.org/10.1007/s10971-009-2119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2119-7

Keywords

Navigation