Skip to main content
Log in

Water determination of precursor solutions with oxidant cations by the Karl Fischer method: the YBCO-TFA case

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Uncontrolled water content in non-aqueous precursor solutions can be a source of irreproducibility in thin film performance through changes in the gel network. Towards gaining control on the solution properties, water determination in metalorganic solutions of YBCO-TFA has been studied by the Karl Fischer titration in a volumetric-type unit. However, oxidizing cations usually present when preparing functional oxides by chemical solution routes severely interfere in the Karl Fischer analysis. In the case of YBCO-TFA, cupric ions in the initial solution oxidize the iodide produced in the Karl Fischer reaction back to iodine, which in turn feeds the titration reaction and consumes more water, causing a negative error in the analysis, which can be as large as 70%. However, such chemical interference of cupric salts can be modelled and quantified. A corrected Karl Fischer methodology is proposed for accurately measuring water content in YBCO-TFA solutions, which could be potentially extended to other precursor solutions containing oxidant cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bhuiyan MS, Paranthaman M, Salama K (2006) Supercond Sci Technol 19:R1–R21. doi:10.1088/0953-2048/19/2/R01

    Article  CAS  ADS  Google Scholar 

  2. Obradors O, Puig T, Pomar A, Sandiumenge F, Mestres N, Coll M, Cavallaro A, Romà N, Gázquez J, González JC, Castaño O, Gutiérrez J, Palau A, Zalamova K, Morlens S, Hassini A, Gibert M, Ricart S, Moretó JM, Piñol S, Isfort D, Bock J (2006) Supercond Sci Technol 19:S13–S26. doi:10.1088/0953-2048/19/3/003

    Article  CAS  ADS  Google Scholar 

  3. McIntyre PC, Cima MJ, Ng MF, Chiu RC, Rhine WE (1990) J Mater Res 5:2771–2779. doi:10.1557/JMR.1990.2771

    Article  CAS  ADS  Google Scholar 

  4. Bruneel E, Verbauwhede D, Van de Vyver D, Schaubroeck J, Hoste S, Van Driessche I (2005) Supercond Sci Technol 18:907–911. doi:10.1088/0953-2048/18/6/019

    Article  CAS  ADS  Google Scholar 

  5. Arul Antony S, Nagaraja KS, Sahasranaman S, Sreedharan OM (1999) Physica C 323:115–121. doi:10.1016/S0921-4534(99)00458-X

    Article  CAS  ADS  Google Scholar 

  6. Morlens S, Romà N, Ricart S, Pomar A, Puig T, Obradors X (2007) J Mater Res 22:2330–2338. doi:10.1557/jmr.2007.0296

    Article  CAS  ADS  Google Scholar 

  7. Kramer S, Wu K, Kordas G (1988) J Electron Mater 17:135–137. doi:10.1007/BF02652143

    Article  CAS  ADS  Google Scholar 

  8. Zalamova K, Romà N, Pomar A, Morlens S, Puig T, Gázquez J, Carrillo AE, Sandiumenge F, Ricart S, Mestres N, Obradors X (2006) Chem Mater 18:5897–5906. doi:10.1021/cm061556+

    Article  CAS  Google Scholar 

  9. Karl Fischer reagents—technical manual, Mitsubishi Chemical Corporation, Tokyo. http://www.mcckf.com/english/scope.html. Accessed 15 Jan 2009

  10. Mitchell J (1951) Anal Chem 23:1069–1075. doi:10.1021/ac60056a005

    Article  CAS  Google Scholar 

  11. Mitchell J, Smith DM, Ashby EC, Bryant WMD (1941) J Am Chem Soc 63:2927–2930. doi:10.1021/ja01856a017

    Article  CAS  Google Scholar 

  12. Araki T, Hirabayasi I, Niwa T (2004) Supercond Sci Technol 17:135–139. doi:10.1088/0953-2048/17/1/023

    Article  CAS  ADS  Google Scholar 

  13. Steffens M, Falter M, Bäcker M, Oligschleger C (2008) J Phys Conf Ser 97:012165. doi:10.1088/1742-6596/97/1/012165

    Article  Google Scholar 

  14. Araki T, Kato T, Muroga T, Niwa T, Yuasa T, Kurosaki H, Iijima Y, Yamada Y, Hirayama T, Saitoh T, Shiohara Y, Hirabayashi I (2003) IEEE Trans Appl Supercond 13:2803–2808. doi:10.1109/TASC.2003.812007

    Article  CAS  Google Scholar 

  15. Jones AG (1951) Analyst (Lond) 76:5–12. doi:10.1039/an9517600005

    Article  CAS  ADS  Google Scholar 

  16. Bryant WMD, Mitchell J, Smith DM, Ashby EC (1941) J Am Chem Soc 63:2924–2927. doi:10.1021/ja01856a016

    Article  CAS  Google Scholar 

  17. Shahidi F, Farrell PG, Edward JT (1976) J Solution Chem 5:807–816. doi:10.1007/BF01167236

    Article  CAS  Google Scholar 

  18. Iida M, Masuda R, Naren G, Bin Y, Kajiwara K (2004) Chem Lett 33:1462–1463. doi:10.1246/cl.2004.1462

    Article  CAS  Google Scholar 

  19. Romà N, Morlens S, Ricart S, Zalamova K, Moretó JM, Pomar A, Puig T, Obradors X (2006) Supercond Sci Technol 19:521–527. doi:10.1088/0953-2048/19/6/019

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Spanish Ministerio de Educación y Ciencia (MAT2008.01022/NAN, CSD2007-00041, MAT2005-02047, NAN2004-09133-C03-01 and I3P-JAE), Generalitat de Catalunya (2005SGR0029 and XaRMAE) and EU HIPERCHEM (NMP-CT2005-516858). A. C. wishes to thank Ministerio de Ciencia e Innovación for the Spanish Ramón y Cajal program, Dr. Mark Rikel from Nexans Superconductors GmbH for valuable discussions and Dr. Marta Figueredo from the Organic Chemistry Department of the Autonomous University of Barcelona for the use of the Karl Fischer titration unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Calleja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calleja, A., Ricart, S., Palmer, X. et al. Water determination of precursor solutions with oxidant cations by the Karl Fischer method: the YBCO-TFA case. J Sol-Gel Sci Technol 53, 347–352 (2010). https://doi.org/10.1007/s10971-009-2100-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2100-5

Keywords

Navigation