Skip to main content
Log in

Effect of phenyl group on the structure and formation of transitional alumina from Al (OPh)3

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The structure of freshly prepared Al(OPh)3, its decomposition product, the hydrolyzed products and their structural evolution were investigated employing 27Al MAS NMR spectroscopy, PXRD, TGA/DTA/DSC/FTIR techniques. In the 27Al MAS NMR spectrum of the aluminium phenoxide, three signals with the chemical shift at 3.78, 21 and 45 ppm were observed. The chemical shift at 3.78 and 45 ppm revealed the presence of four and sixfold coordinated aluminum. The signal at 21 ppm corresponded to fivefold coordinated aluminium. When the aluminium phenoxide was directly decomposed in air at 600 °C, it resulted in amorphous product as evidenced from the PXRD pattern. The observed signals with chemical shifts at 10.1, 42, 73.6 ppm in the 27Al MAS NMR spectrum indicated the presence of 6, 5 and 4 coordination for the aluminium atoms suggesting disordered transitional γ-alumina to be the product. The hydrolysis studies of Al(OPh)3 with excess of water at 70 °C yielded bohemite (γ-AlOOH). The alumina obtained after dehydration at 600 °C was X-ray amorphous. The dehydrated product at 600 °C showed the presence of four and six coordinated aluminium atoms in the 27Al MAS NMR spectrum confirming it to be ordered γ-Al2O3. Crystalline γ-Al2O3 was obtained on further heating at 800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mehrotra RC, Rai AK (1991) Polyhedron 10:1967–1994

    Article  CAS  Google Scholar 

  2. Kriz O, Casensky B, Lycka A, Fusek J, Hermanek S (1984) J Magn Reson 60:375–381

    CAS  Google Scholar 

  3. Malhotra KC, Kaur AJ, Kalra JMK (1985) J Indian Chem Soc 62:494–497

    CAS  Google Scholar 

  4. Meese-Marktscheffel JA, Cramer RE, Gilje JW (1994) Polyhedron 13:1045–1050

    Article  CAS  Google Scholar 

  5. Malhotra KC, Martin RL (1982) J Organomet Chem 239:159–187

    Article  CAS  Google Scholar 

  6. Sovar MM, Samelor D, Gleizes AN, Vahlas C (2007) Surf Coating Tech 201:9159–9162

    Article  CAS  Google Scholar 

  7. Ramesh S, Sominska E, Cina B, Chaim R, Gedanken A (2000) J Am Ceram Soc 83:89–94

    Article  CAS  Google Scholar 

  8. Adschiri T, Kanazawa K, Arai K (1992) J Am Ceram Soc 75:2615–2618

    Article  CAS  Google Scholar 

  9. Jhon CS, Alma NCM, Hays GR (1983) Appl Catal 6:341–346

    Article  Google Scholar 

  10. Kureti S, Wieswieler W (2002) Appl Catal A: General 225:251–259

    Article  CAS  Google Scholar 

  11. Ramanathan S, Roy SK, Bhat R, Upadhyaya DD, Biswas AR (1997) Ceram Inter 23:45–53

    Article  CAS  Google Scholar 

  12. Slade RCT, Southern JC, Thompson IM (1991) J Mater Chem 1:875–879

    Article  CAS  Google Scholar 

  13. Kwak JH, Hu JZ, Kim DH, Szanyi J, Peden CHF (2007) J Catal 251:189–194

    Article  CAS  Google Scholar 

  14. Nakamoto K (1977) Infrared and raman spectra of inorganic and coordination compounds, 3rd edn. Wiley Interscience Publication, New York

    Google Scholar 

  15. Bradely DC (1972) Adv Inorg Radiochem 15:259–322

    Google Scholar 

  16. Kleinschmidt DC, Shiner VJ Jr, Whittaker D (1973) J Org Chem 38:3334–3337

    Article  CAS  Google Scholar 

  17. Oliver JG, Worral IJ (1970) J Chem Soc A 845–848

  18. Oliver JG, Worral IJ (1970) J Cem Soc A 1389–1391

  19. Kunicki A, Koinska W, Boleslawski M, Pasynkiewicz S (1977) J Organomet Chem 141:283–288

    Article  CAS  Google Scholar 

  20. O’Reilly DE (1960) J Chem Phys 32:1007–1012

    Article  ADS  Google Scholar 

  21. Athar T, Bohra R, Mehrotra RC (1989) Ind J Chem 28A:492–495

    CAS  Google Scholar 

  22. Flory PJ (1949) J Chem Phys 12:223–240

    Article  ADS  Google Scholar 

  23. Turova NYA, Kozunov VA, Yanovskii AI, Bokii NG, Struchkov YUT, Tarnopol’skii BL (1979) J Inorg Nucl Chem 41:5–11

    Article  CAS  Google Scholar 

  24. Hill MR, Baston TJ, Hill AJ (2009) Chem Mater 19:2877–2883

    Article  Google Scholar 

  25. O’Dell LA, Savin SLP, Chadwick AV, Smith ME (2007) Solid State Nucl Magn Reson 31:169–173

    Article  PubMed  Google Scholar 

  26. Park YK, Tadd EH, Zubris M, Tannenbaum R (2005) Mat Res Bull 40:1506–15122

    Article  CAS  Google Scholar 

  27. Urretavizcaya G, Cavalieri AL, Porto Lopez JM, Sobrados I, Sanz J (1998) J Mater Synth Proces 6:1–7

    Article  CAS  Google Scholar 

  28. Werner SK (1974) Differential thermal analysis. Application and Results in Mineralogy, Berlin

    Google Scholar 

  29. Boumaza A, Favaro L, Ledion J, Sattonnay G, Brubach JB, Berthet P, Huntz AM, Roy P, Tetot R (2009) J Solid State Chem 182:1171–1176

    Article  CAS  ADS  Google Scholar 

  30. Raharjo P, Ishizaki C, Ishizaki K (2000) J Ceram Soc Japan 108:1–5

    CAS  Google Scholar 

  31. Dorsey GA Jr (1968) Anal Chem 40:971–972

    Article  CAS  Google Scholar 

  32. Liu Q, Wang A, Wang X, Gao P, Wang X, Zhang T (2008) Microporous Mesoporous Mater 111:323–333

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to record their sincere thanks to Department of Science and Technology, Government of India and University of Delhi for the financial support to carryout this work. Also thanks are due to Professor A.K. Ganguli and Professor A. Ramanan of Indian Institute of Technology (IIT, Delhi) for the use of XRD facility and to Indian Institute of Science, Bangalore, India for recording the 27Al MAS NMR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nagarajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomar, N., Nagarajan, R. Effect of phenyl group on the structure and formation of transitional alumina from Al (OPh)3 . J Sol-Gel Sci Technol 53, 293–299 (2010). https://doi.org/10.1007/s10971-009-2090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2090-3

Keywords

Navigation