Skip to main content
Log in

Photostability and retention of UV absorber molecules in sol–gel hybrid UV-protective coatings

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Highly efficient UV-protecting coatings were prepared, consisting on UV absorber molecules embedded in transparent sol–gel phenyl-functionalized silica thin-films. The photostability and retention of the molecules in the films depend strongly on parameters such as the composition of the hybrid host matrix, the UV-absorber loading in the matrix and the sol–gel preparation conditions. The amount of the modifying phenyl group was found to affect strongly the retention of the UV absorber molecules in the matrix. The retention of the molecules incorporated in the thin-films showed an increase of 21 times as the amount of the phenyl groups is reduced by a factor of 4. On the other hand, the incorporation of increasing amounts of Ph groups lead to a slight decrease of the photostability of the UV absorber molecules. The ability to control the parameters affecting the durability of the UV absorber molecules in the sol–gel matrices allows us increase the effectiveness of the UV-protective films and hence their potential usage in both, indoors and outdoors applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pospísil J, Nespurek S (2000) Prog Polym Sci 25:1261–1335

    Article  Google Scholar 

  2. Pospisil J, Nespurek S (2005) J Optoelectron Adv Mater 7:1157–1168

    Google Scholar 

  3. Andrade AL, Hamid SH, Hu X, Torikai A (1998) J Photochem Photobiol B 46:96–103

    Article  Google Scholar 

  4. Decker C, Zahouily K (1999) Polym Degrad Stab 64:293–304

    Article  CAS  Google Scholar 

  5. George B, Suttie E, Merlin A, Deglise X (2005) Polym Degrad Stab 88:268–274

    Article  CAS  Google Scholar 

  6. Gugumus F (2002) Polym Degrad Stab 75:309–320

    Article  CAS  Google Scholar 

  7. Girois S, Delprat P, Audouin L, Verdu J (1999) Polym Degrad Stab 64:107–114

    Article  CAS  Google Scholar 

  8. Morimoto T, Tomonaga H, Mitani A (1999) Thin Solid Films 351:61–65

    Article  CAS  ADS  Google Scholar 

  9. Nagashima T, Kuramashi H (1994) J Non-Cryst Solids 178:182–188

    Article  CAS  ADS  Google Scholar 

  10. Mahltig B, Böttcher H, Rauch K, Dieckmann U, Nitsche R, Fritz T (2005) Thin Solid Films 485:108–114

    Article  CAS  ADS  Google Scholar 

  11. Soucek MD, Johnson AH, Meemken LE, Wegner JM (2005) Polym Adv Technol 16:257–261

    Article  CAS  Google Scholar 

  12. Kundu D, Mukherjee R (2003) J Mater Sci Lett 22:1647–1649

    Article  CAS  Google Scholar 

  13. Miyafuji H, Kokaji H, Saka S (2004) J Wood Sci 74:97–100

    Google Scholar 

  14. Hwang DK, Moon JH, Shul YG, Jung KT, Kim DH, Lee DW (2003) J Sol–Gel Sci Technol 26:783–787

    Article  CAS  Google Scholar 

  15. Garcia-Parejo P, Zayat M, Levy D (2006) J Mater Chem 16:2165–2169

    Article  Google Scholar 

  16. Zayat M, Garcia-Parejo P, Levy D (2007) Chem Soc Rev 36:1270–1281

    Article  CAS  PubMed  Google Scholar 

  17. Avnir D, Levy D, Reisfeld R (1984) J Phys Chem 88:5956–5959

    Article  CAS  Google Scholar 

  18. Levy D, Avnir D (1988) J Phys Chem 92:4734–4738

    Article  CAS  Google Scholar 

  19. Brinker CJ, Sherer GW (1990) Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing. Academic Press, San Diego

    Google Scholar 

  20. Bonekamp JE, Maecker NL (1994) J Appl Polym Sci 54:1593–1604

    Article  CAS  Google Scholar 

  21. Pickett JD, Moore JE (1995) Angew Makromol Chem 232:229–238

    Article  CAS  Google Scholar 

  22. Pickett JE, Moore JE (1993) Polym Degrad Stab 42:231–244

    Article  CAS  Google Scholar 

  23. Iyengar R, Schellenberg B (1998) Polym Degrad Stab 61:151–159

    Article  CAS  Google Scholar 

  24. Klöpffer W (1977) Adv Photochem 10:311–358

    Article  Google Scholar 

  25. Otterstedt JEA (1973) J Chem Phys 58:5716–5725

    Article  CAS  ADS  Google Scholar 

  26. Mosquera M, Penedo JC, Rodríguez MCR, Rodríguez-Prieto F (1996) J Phys Chem 100:5398–5407

    Article  CAS  Google Scholar 

  27. Ghiggino KP, Scully AD, Leaver IH (1986) J Phys 90:5089–5093

    CAS  Google Scholar 

  28. Pickett JE (2000) In: Hamid SH (ed) Handbook of Polymer Degradation ch. 5, 2nd edn. Marcel Dekker, New York, pp 163–190

    Google Scholar 

  29. Pardo R, Zayat M, Levy D (2005) J Mater Chem 15:703–708

    Article  CAS  Google Scholar 

  30. Zayat M, Pardo R, Levy D (2003) J Mater Chem 13:2899–2903

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by PET2006_0125 and MAT2008-00010/NAN projects from MICINN and PIE200860IO74 project from CSIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Levy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parejo, P.G., Zayat, M. & Levy, D. Photostability and retention of UV absorber molecules in sol–gel hybrid UV-protective coatings. J Sol-Gel Sci Technol 53, 280–286 (2010). https://doi.org/10.1007/s10971-009-2088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2088-x

Keywords

Navigation