Skip to main content
Log in

The influence of polyvinylpyrrolidone on thick and optical properties of BaTiO3:Er3+ thin films prepared by sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Erbium (Er3+) 0.5% mol doped barium titanate (BaTiO3) thin films were elaborated via sol–gel method and dip-coating technique using titanium alkoxide and barium pentanedionate. Two syntheses were performed [with and without polyvinylpyrrolidone (PVP)] in order to obtain thick films. The BaTiO3:Er3+ thin films prepared from the sol with PVP were elaborated with 1 layer and those without PVP and were elaborated with 17 layers. In both cases, the films were deposited on silica quartz substrates. Both BaTiO3:Er3+ films presented a cubic phase, as determined by X-ray diffraction. BaTiO3:Er3+ films elaborated with PVP via single-step dip coating produced crack-free films with thicknesses of ~800 nm. SEM micrographs for the obtained BaTiO3:Er3+ films revealed high homogeneity and density. Mapping images obtained from BaTiO3:Er3+ revealed homogeneous distribution of Er3+ ions on the surface. XPS analyses of the chemical state and chemical environment of the constituent elements in the compositions showed that Er3+ ions in (Ba1−x Er x )TiO3 are in mixed valence of Er3+/Er2+. The BaTiO3:Er3+-PVP film exhibited luminescent properties under near-infrared excitation, as revealed by green emissions. The BaTiO3:Er3+-PVP film has good potential for optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xuan L, Pan S, Chen Z, Wang R, Shi W, Li C (1998) Appl Phys Lett 73:2896–2898

    Article  ADS  CAS  Google Scholar 

  2. Zhang HX, Kam CH, Zhou Y, Han XQ, Xiang Q, Buddhudu S, Lam YL, Chan YC (2000) J Alloys Compd 308:134–138

    Article  CAS  Google Scholar 

  3. Dimos D (1995) Annu Rev Mater Sci 25:273–293

    Article  CAS  ADS  Google Scholar 

  4. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London, pp 91–108

    Google Scholar 

  5. Okamoto S, Yamamoto H (2001) Appl Phys Lett 78:655–657

    Article  ADS  CAS  Google Scholar 

  6. Maeda N, Wada N, Onoda H, Maegawa A, Kojima K (2003) Thin Solid Films 445:382–386

    Article  ADS  CAS  Google Scholar 

  7. Meneses-Nava MA, Barbosa-García O, Maldonado JL, Ramos-Ortíz G, Pichardo JL, Torres-Cisneros M, García-Hernández M, García-Murillo A, Carrillo Romo F de J (2008) Opt Mater 31:252–260

  8. Hoerman BH, Ford GM, Kaufmann LD, Wessels BW (1998) Appl Phys Lett 73:2248–2250

    Article  ADS  CAS  Google Scholar 

  9. Tsur Y, Dunbar TD, Randall CA (2001) J Electroceram 7:25–34

    Article  CAS  Google Scholar 

  10. Buscaglia MT, Buscaglia V, Viviani M, Nanni P, Hanuskova M (2000) J Eur Ceram Soc 20:1997–2007

    Article  CAS  Google Scholar 

  11. Block BBA, Wessels BW (1994) Appl Phys Lett 65:25–27

    Article  ADS  CAS  Google Scholar 

  12. Yi GC, Block BA, Ford GM, Wessels W (1998) Appl Phys Lett 73:1625–1627

    Article  ADS  CAS  Google Scholar 

  13. Buchal C, Mohr S (1991) J Mater Res 6:134–137

    Article  ADS  CAS  Google Scholar 

  14. Block BA, Wessels BW (1996) Mater Res Soc Symp Proc 415:175–182

    CAS  Google Scholar 

  15. Hernandez BA, Chang K-S, Fisher ER, Dorhout PK (2002) Chem Mater 14(2):480–482

    Article  CAS  Google Scholar 

  16. Zhang S, Jiang F, Qu G, Lin C (2008) Mater Lett 62(15):2225–2228

    Article  CAS  Google Scholar 

  17. Preda L, Courselle L, Despa B, Bandet J, Ianculescu A (2001) Thin Solid Films 389:43–50

    Article  ADS  CAS  Google Scholar 

  18. Li GQ, Lai PT, Zeng SH, Huang MQ, Li B (1999) Sens Actuators A 75:70–74

    Article  Google Scholar 

  19. Mackee RA, Walker FJ, Specht ED, Jellisson GE Jr, Boatner LA (1994) Phys Rev Lett 72:2741–2744

    Article  ADS  Google Scholar 

  20. Fujita J, Suzuki K, Wada N, Sakabe Y, Takeuchi K, Ohki Y (2006) J Appl phys 45:7806–7812

    Article  CAS  Google Scholar 

  21. Boulos M, Fritsch SG, Mathieu F, Durand B, Lebey T, Bley V (2005) Solid State Ionics 176:1301–1309

    Article  CAS  Google Scholar 

  22. BrzozoWski E, Castro MS (2000) J Eur Ceram Soc 20:2347–2351

    Article  CAS  Google Scholar 

  23. Hu ZC, Miller GA, Payzant EA, Rawn CJ (2000) J Mater Sci 35:2927–2936

    Article  CAS  Google Scholar 

  24. García Murillo A, Carrillo Romo F de J, Le Luyer C, de Morales Ramírez AJ, Hernández MG, Moreno Palmerin J (2009) J Sol-Gel Sci Technol 50(3):359–368

    Article  CAS  Google Scholar 

  25. Chen W, Geng Y, Sun X-D, Cai Q, Li H-D, Weng D (2008) Microporous Mesoporous Mater 111(1–3):219–227

    Article  CAS  Google Scholar 

  26. Yamamoto Y, Kamiya K, Sakka S (1982) Yogyo Kyokaishi 90:328–333

    CAS  Google Scholar 

  27. Chien W–C (2006) J Cryst Growth 290:554

    Article  ADS  CAS  Google Scholar 

  28. Ledermann N, Muralt P, Baborowski J, Gentil S, Mukati K, Cantoni M, Seifert A, Setter N (2003) Sens Actuators A 105:162–170

    Article  CAS  Google Scholar 

  29. Chen HD, Udayakumar KR, Gaskey CJ, Cross LE (1995) Appl Phys Lett 67:3411–3413

    Article  ADS  CAS  Google Scholar 

  30. Du XH, Belegundu U, Uchino K (1997) Jpn J Appl Phys 36:5580–5587

    Article  ADS  CAS  Google Scholar 

  31. Park GT, Park CS, Choi JJ, Kim HE (2005) J Mater Res 20:882–888

    Article  ADS  CAS  Google Scholar 

  32. Schmidt H, Rinn G, Naß R, Sporn D (1988) Mater Res Soc Symp 121:743

    CAS  Google Scholar 

  33. Phillips NJ, Calzada ML, Milne SJ (1982) Sol–gel-derived lead titanate films. J Non-Cryst Solids 147–148:285–290

    Google Scholar 

  34. Kozuka H, Takenaka S, Tokita H, Okubayashi M (2004) J Eur Ceram Soc 24:1585–1588

    Article  CAS  Google Scholar 

  35. Kozuka H, Kajimura M, Hirano T, Katayama K (2000) J Sol-Gel Sci Technol 19:205–209

    Article  CAS  Google Scholar 

  36. Kozuka H, Isota Y, Higuchi A, Hamatani T (2001) In: Miyata N, Ota R, Miyamoto Y, Shiono T (eds) Proceedings of international symposia on materials science for the 21st century. The Society of Materials Science, Kyoto, pp 122–125

  37. Kozuka H, Katayama K, Isota Y, Takenaka S (2001) Ceram Trans 123:105–110

    CAS  Google Scholar 

  38. Kozuka H, Kajimura M (2000) J Am Ceram Soc 83:1056–1062

    Article  CAS  Google Scholar 

  39. Yoshida M, Prassad PN (1995) Mater Res Soc Symp Proc 392:103–108

    CAS  Google Scholar 

  40. Kobayashi Y, Kosuge A, Konno M (2008) Appl Surf Sci 255:2723–2729

    Article  ADS  CAS  Google Scholar 

  41. Kozuka H, Higuchi A (2003) J Am Ceram Soc 86:33–38

    Article  CAS  Google Scholar 

  42. Livage J, Henry M, Sanchez C (1988) Prog Solid State Chem 18:259–342

    Article  CAS  Google Scholar 

  43. Hubert-Pfalzgraf LG (1987) New J Chem 11:663–675

    CAS  Google Scholar 

  44. Legrand-Buscema C, Malibert C, Bach S (2002) Thin Solid Films 418:79–84

    Article  ADS  CAS  Google Scholar 

  45. Bahtat M, Mugnier J, Lou L, Bovier C, Serughetti J, Genet M (1992) J Opt 23:215–222

    Article  ADS  Google Scholar 

  46. Marques VS, Cavalcante LS, Sczancoski JC, Volanti DP, Espinosa JWM, Joya MR, Santos MRMC, Pizani PS, Varela JA, Longo E (2008) Solid State Sci 10:1056–1061

    Article  ADS  CAS  Google Scholar 

  47. Paris EC, Gurgel MFC, Boschi TM, Joya MR, Pizani PS, Souza AG, Leite ER, Varela JA, Longo E (2008) J Alloys Compd 462(1–2):157–163

    Article  CAS  Google Scholar 

  48. García Murillo A, Carrillo Romo F de J, García Hernández M, Barbosa García O, Meneses Nava A, Palomares Sánchez S, Flores Vela A (2009) Mater Trans 50(7):1850–1854

    Article  CAS  Google Scholar 

  49. Patterson AL (1939) Phys Rev 56:978–982

    Article  MATH  ADS  CAS  Google Scholar 

  50. Kozuka H, Kajimura M (1999) Chem Lett 10:1029–1030

    Article  Google Scholar 

  51. Kozuka H, Kajimura M, Katayama K, Isota Y, Hirano T (2000) Mater Res Soc Symp Proc 606:187–192

    CAS  Google Scholar 

  52. Kozuka H, Isota Y, Hosokawa M (2001) Single-step deposition of crack-free, thick ceramic films aided by poly(vinylpyrrolidone). In: Hirano S-I, Messing GL, Claussen N (eds) Ceramic transactions, vol 112 (Ceramic processing science VI). American Ceramic Society, Westerville, pp 335–340

  53. Kozuka H, Katayama K, Isota Y, Takenaka S (2001) In: Feng X, Klein LC, Pope EJA, Komarneni S (eds) Sol–gel commercialization and applications, vol 123. American Ceramic Society, Westerville

    Google Scholar 

  54. García Murillo A, Carrillo Romo F de J, Le Luyer C, de Morales Ramírez AJ, García Hernández M, Moreno Palmerin J (2009) J Sol-Gel Sci Technol 50(3):359–368

    Article  CAS  Google Scholar 

  55. Urlich R, Torge R (1973) Appl Opt 12:2901–2908

    Article  ADS  Google Scholar 

  56. Suzuki S, Tanaka M, Ishigame M (1985) Jpn J Appl Phys 26:401–410

    Article  ADS  Google Scholar 

  57. Nishihara H, Haruna M, Suhara T (1985) Optical integrated circuits. McGraw-Hill, New York, p 363

    Google Scholar 

  58. Frey MH, Payne DA (1996) Phys Rev B 54(5):3158–3168

    Article  ADS  CAS  Google Scholar 

  59. Lee B, Zhang J (2001) Thin Solid Films 388:107–113

    Article  ADS  CAS  Google Scholar 

  60. Xu J, Zhai J, Yao X, Xue J, Huang Z (2007) J Sol-Gel Sci Technol 42:209–212

    Article  CAS  Google Scholar 

  61. Vetrone F, Boyer JC, Capobianco JA, Speghini A, Bettinelli M (2003) J Phys Chem B 107(5):1107–1112

    Article  CAS  Google Scholar 

  62. Wenger OS, Gamelin DR, Gudel HU, Butashin AV, Kaminskii AA (1999) Phys Rev B 60:5312–5320

    Article  ADS  CAS  Google Scholar 

  63. Lua D-Y, Sugano M, Sunc X-Y, Su W-H (2005) Appl Surf Sci 242:318–325

    Article  ADS  CAS  Google Scholar 

  64. Oku M, Wagatsuma K, Kohiki S (1999) Phys Chem Chem Phys 1:5327

    Article  CAS  Google Scholar 

  65. Miao J-P, Li L-P, Liu H-J, Xu D-P, Lu Z, Song Y-B, Su W-H, Zheng Y-G (2000) Mater Lett 42:1

    Article  CAS  Google Scholar 

  66. Ferri EAV, Sczancoski JC, Cavalcante LS, Paris EC, Espinosa JWM, de Figueiredo AT, Pizani PS, Mastelaro VR, Varela JA, Longo E (2009) Mater Chem Phys 117:192–198

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CONACYT for financial support of projects 59408 and 59998 and the National Polytechnic Institute (SIP20090528). The authors wish to acknowledge Daniel Ramírez González from IPICYT for his SEM analysis support. M. García thanks Conacyt for her Ph.D scholarship grant. The authors would like to thank David Nentwick for his editing work on this paper. The authors would also like to thank M. García Murillo for her assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. García Murillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García Hernández, M., Carrillo Romo, F.d.J., García Murillo, A. et al. The influence of polyvinylpyrrolidone on thick and optical properties of BaTiO3:Er3+ thin films prepared by sol–gel method. J Sol-Gel Sci Technol 53, 246–254 (2010). https://doi.org/10.1007/s10971-009-2084-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2084-1

Keywords

Navigation